Difference between revisions of "Aufgaben:Exercise 4.4Z: Contour Lines of the "2D-PDF""

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Gaußsche Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables
 
}}
 
}}
  
[[File:P_ID297__Sto_Z_4_4.png|right|frame|Gaußsche 2D-WDF:   Höhenlinien]]
+
[[File:P_ID297__Sto_Z_4_4.png|right|frame|Gaussian 2D PDF:   contour lines]]
Gegeben ist eine zweidimensionale Gaußsche Zufallsgröße  $(x, y)$  mit Mittelwert  $(0, 0)$  und der 2D–WDF
+
Given a two-dimensional Gaussian random variable  $(x, y)$  with mean  $(0, 0)$  and the 2D PDF.
 
:$$f_{xy}(x, y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$
 
:$$f_{xy}(x, y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$
  
Bekannt ist weiter, dass die beiden Streuungen  $\sigma_x$  und  $\sigma_y$  jeweils gleich  $1$  sind.  
+
It is further known that the two standard deviations  $\sigma_x$  and  $\sigma_y$  are respectively equal  $1$ .  
  
In der Skizze eingetragen sind:
+
Entered in the sketch are:
* Eine Höhenlinie dieser WDF für  $f_{xy}(x,y) =0.2$,
+
* a height line of this PDF for  $f_{xy}(x,y) =0.2$,
* die (dunkelblaue) Ellipsenhauptachse  $\rm (EA)$, und
+
* the (dark blue) ellipse major axis  $\rm (EA)$, and
* die (rote) Korrelationsgerade  $y=K(x)$.
+
* the (red) correlation line  $y=K(x)$.
  
  
Line 20: Line 20:
  
  
''Hinweise:''
+
Hints:
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-dimensional Gaussian Random Variables]].
  
*Weitere Informationen zu dieser Thematik liefert das Lernvideo  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaußsche 2D-Zufallsgrößen]]:
+
*More information on this topic is provided in the learning video  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaussian 2D random variables]]:
::Teil 1:   Gaußsche Zufallsgrößen ohne statistische Bindungen,   
+
::Part 1:   Gaussian random variables without statistical bindings,   
::Teil 2:   Gaußsche Zufallsgrößen mit statistischen Bindungen.  
+
::Part 2:   Gaussian random variables with statistical bindings.  
 
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist der Korrelationskoeffizient&nbsp; $\rho_{xy}$?
+
{How large is the correlation coefficient $\rho_{xy}$?
 
|type="{}"}
 
|type="{}"}
 
$\rho_{xy} \ = \ $ { -0.727--0.687 }
 
$\rho_{xy} \ = \ $ { -0.727--0.687 }
  
  
{Wie gro&szlig; ist der Maximalwert&nbsp; $C = f_{xy}(0, 0)$&nbsp; der WDF?
+
{What is the maximum value&nbsp; $C = f_{xy}(0, 0)$&nbsp; of the PDF?
 
|type="{}"}
 
|type="{}"}
 
$C \ = \ $ { 0.225 3% }
 
$C \ = \ $ { 0.225 3% }
  
  
{Wie groß ist der Winkel&nbsp; $\alpha$&nbsp; zwischen Ellipsenhauptachse&nbsp; $\rm (EA)$&nbsp; und&nbsp; $x$&ndash;Achse?
+
{What is the angle&nbsp; $\alpha$&nbsp; between ellipse major axis&nbsp; $\rm (EA)$&nbsp; and&nbsp; $x$&ndash;axis?
 
|type="{}"}
 
|type="{}"}
$\alpha\ = \ $ { -46--44 } $ \ \rm Grad$
+
$\alpha\ = \ $ { -46--44 } $ \ \rm degrees$
  
  
{Bei welchen Werten&nbsp; $x_0$&nbsp; bzw.&nbsp; $y_0$&nbsp; schneidet die H&ouml;henlinie&nbsp; $f_{xy}(x,y) = 0.2$&nbsp; die Ellipsenhauptachse?&nbsp; Welcher Zusammenhang besteht zwischen&nbsp; $x_0$&nbsp; und&nbsp; $y_0$?
+
{At what values&nbsp; $x_0$&nbsp; and&nbsp; $y_0$&nbsp; respectively, does the hemline&nbsp; $f_{xy}(x,y) = 0.2$&nbsp; intersect the ellipse major axis?&nbsp; What is the relationship between&nbsp; $x_0$&nbsp; and&nbsp; $y_0$?
 
|type="{}"}
 
|type="{}"}
 
$x_0/y_0 \ = \ $ { -1.03--0.97 }
 
$x_0/y_0 \ = \ $ { -1.03--0.97 }
  
  
{Welche Aussagen treffen hinsichtlich der Korrelationsgeraden&nbsp; $K(x)$&nbsp; zu?
+
{Which statements are true regarding the correlation line&nbsp; $K(x)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Die Korrelationsgerade ist steiler als die Ellipsenhauptachse.
+
- The correlation line is steeper than the ellipse major axis.
+ Der Winkel von&nbsp; $K(x)$&nbsp; gegen&uuml;ber der&nbsp; $x$&ndash;Achse ist etwa&nbsp; $-35^\circ$.
+
+ The angle of&nbsp; $K(x)$&nbsp; with respect to&nbsp; $x$&ndash;axis is about&nbsp; $-35^\circ$.
+ Die Korrelationsgerade schneidet alle H&ouml;henlinien dort, wo an die Ellipse eine vertikale Tangente angelegt werden kann.
+
+ The correlation line intersects all hemlines where a vertical tangent can be applied to the ellipse.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Auch ohne die Angabe&nbsp; $\sigma_x = \sigma_y = 1$&nbsp; könnte man erkennen, dass die Streuungen&nbsp; $\sigma_x$&nbsp; und&nbsp; $\sigma_y$&nbsp; gleich sind,  
+
'''(1)'''&nbsp; Even without specifying&nbsp; $\sigma_x = \sigma_y = 1$&nbsp; one could see that the standard deviations&nbsp; $\sigma_x$&nbsp; and&nbsp; $\sigma_y$&nbsp; are equal,  
*da im Exponenten von $f_{xy}(x, y)$&nbsp; die Koeffizienten bei&nbsp; $x^2$&nbsp; und&nbsp; $y^2$&nbsp; gleich sind.  
+
*since in the exponent of $f_{xy}(x, y)$&nbsp; the coefficients at&nbsp; $x^2$&nbsp; and&nbsp; $y^2$&nbsp; are equal.  
*Durch Koeffizientenvergleich erhält man somit:
+
*By comparing coefficients, we thus obtain:
 
:$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
:$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$
 
\rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$
  
  
'''(2)'''&nbsp; Mit den unter Punkt&nbsp; '''(1)'''&nbsp; berechneten Zahlenwerten erhalten wir zudem:
+
'''(2)'''&nbsp; Using the numerical values calculated in point&nbsp; '''(1)'''&nbsp; we also obtain:
 
:$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}}
 
:$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}}
 
=\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$
 
=\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$
  
  
'''(3)'''&nbsp; Die allgemeine Gleichung lautet:  
+
'''(3)'''&nbsp; The general equation is:  
:$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan \ (\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}{\rm )}.$$
+
:$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan \ (\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}{\rm ).}.$$
  
*Gilt&nbsp; $\sigma_x = \sigma_y$&nbsp; und&nbsp; $\rho_{xy} \ne 0$,&nbsp; so ist der Winkel immer&nbsp; $\alpha = \pm 45^\circ$, wobei das Vorzeichen gleich dem Vorzeichen von&nbsp; $\rho_{xy}$&nbsp; ist.  
+
*Applies&nbsp; $\sigma_x = \sigma_y$&nbsp; and&nbsp; $\rho_{xy} \ne 0$,&nbsp; then the angle is always&nbsp; $\alpha = \pm 45^\circ$, where the sign is equal to the sign of&nbsp; $\rho_{xy}$&nbsp; .  
*Im vorliegenden Fall gilt&nbsp; $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$.
+
*In the present case&nbsp; $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$ holds.
  
  
  
'''(4)'''&nbsp; F&uuml;r die eingezeichnete H&ouml;henlinie gilt:
+
'''(4)'''&nbsp; For the plotted contour line holds:
:$$f_{xy}(x, y)=\frac{1}{\sqrt{2}\cdot \pi}\cdot {\rm e}^{(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=0.2\hspace{0.3cm}
+
:$$f_{xy}(x, y)=\frac{1}{\sqrt{2}\cdot \pi}\cdot {\rm e}^{(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=0.2\hspace{0.3cm}
\Rightarrow \hspace{0.3cm}{\rm e}^{-(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885
+
\rightarrow \hspace{0.3cm}{\rm e}^{-(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$
+
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$
  
*Der Winkel der Ellipsenhauptachse ist&nbsp; $\alpha = -45^\circ$.&nbsp; Deshalb muss&nbsp; $y_0 = - x_0$&nbsp; gelten. Daraus folgt weiter:
+
*The angle of the ellipse major axis is&nbsp; $\alpha = -45^\circ$.&nbsp; Therefore&nbsp; $y_0 = - x_0$&nbsp; must hold. It further follows:
 
:$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$
 
:$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$
:$$\Rightarrow \hspace{0.3cm}(\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118}  
+
:$$\Rightarrow \hspace{0.3cm}(\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118}  
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$
+
\hspace{0.5cm}\rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$
  
*Die beiden Schnittpunkte der eingezeichneten H&ouml;henlinien mit der Ellipsenhauptachse liegen somit bei&nbsp; $(+0.45, -0.45)$&nbsp; und&nbsp; $(-0.45, +0.45)$.  
+
*The two intersections of the plotted contour lines with the ellipse major axis are thus at&nbsp; $(+0.45, -0.45)$&nbsp; and&nbsp; $(-0.45, +0.45)$.  
*Der Quotient ist in beiden Fällen&nbsp; $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$.
+
*The quotient in both cases is&nbsp; $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$.
  
  
  
  
'''(5)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2 und 3</u>:  
+
'''(5)'''&nbsp; Correct are <u>the proposed solutions 2 and 3</u>:  
*Mit&nbsp; $\sigma_x = \sigma_y$&nbsp; und dem Ergebnis der Teilaufgabe&nbsp; '''(1)'''&nbsp; gilt f&uuml;r den Winkel der Korrelationsgeraden:
+
*With&nbsp; $\sigma_x = \sigma_y$&nbsp; and the result of the subtask&nbsp; '''(1)'''&nbsp; holds for the angle of the correlation line:
 
:$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$
 
:$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$
*Das bedeutet: &nbsp; Die erste Aussage ist falsch und die zweite richtig.  
+
*This means: &nbsp; The first statement is false and the second is true.  
  
  
Nachfolgend der <u>Beweis für die Richtigkeit der letzten Aussage</u>:  
+
The following is the <u>proof of the correctness of the last statement</u>:  
*L&ouml;st man die Ellipsengleichung&nbsp; $($mit&nbsp; $z = 0.118)$,&nbsp; also&nbsp; $x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0$,&nbsp; nach&nbsp; $y$&nbsp; auf, so erh&auml;lt man nach L&ouml;sung einer quadratischen Gleichung:
+
*Solving the elliptic equation&nbsp; $($with&nbsp; $z = 0. 118)$,&nbsp; so&nbsp; $x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0$,&nbsp; to&nbsp; $y$&nbsp; we get after solving a quadratic equation:
:$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}}
+
:$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}}
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$
+
\hspace{0.5cm}\rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$
*Die vertikale Tangente ergibt sich f&uuml;r den Fall, dass die beiden L&ouml;sungen&nbsp; $y_{\rm 1, \ 2}$&nbsp; identisch sind.&nbsp; Das heißt: &nbsp; Der Wurzelausdruck muss Null ergeben.  
+
*The vertical tangent results for the case that the two solutions&nbsp; $y_{\rm 1, \rm 2}$&nbsp; are identical.&nbsp; That is: &nbsp; The root expression must result in zero.  
*Die L&ouml;sung f&uuml;r positives&nbsp; $x$&nbsp; lautet dann: &nbsp; $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$
+
*The solution for positive&nbsp; $x$&nbsp; is then: &nbsp; $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$
*Eingesetzt in die Ellipsengleichung erh&auml;lt man f&uuml;r den&nbsp; $y$&ndash;Wert des Tangentialpunktes:  
+
*Inserted into the ellipse equation one obtains f&uuml;r the&nbsp; $y$&ndash;value of the tangent point:  
 
:$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0
 
:$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$
+
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$
:$$\Rightarrow \hspace{0.3cm}y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0
+
:$$\Rightarrow \hspace{0.3cm}y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$
+
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$
  
*Daraus ergibt sich&nbsp; $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}.$&nbsp; Das bedeutet aber auch: &nbsp; Der Tangentialpunkt&nbsp; $(x_{\rm T}, y_{\rm T})$&nbsp; liegt exakt auf der Korrelationsgeraden&nbsp; $y=K(x)=-{ x}/{\sqrt{\rm 2}}.$
+
*This gives&nbsp; $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}. $&nbsp; But this also means: &nbsp; The tangent point&nbsp; $(x_{\rm T}, y_{\rm T})$&nbsp; lies exactly on the correlation line&nbsp; $y=K(x)=-{ x}/{\sqrt{\rm 2}}.$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 23:37, 23 January 2022

Gaussian 2D PDF:   contour lines

Given a two-dimensional Gaussian random variable  $(x, y)$  with mean  $(0, 0)$  and the 2D PDF.

$$f_{xy}(x, y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$

It is further known that the two standard deviations  $\sigma_x$  and  $\sigma_y$  are respectively equal  $1$ .

Entered in the sketch are:

  • a height line of this PDF for  $f_{xy}(x,y) =0.2$,
  • the (dark blue) ellipse major axis  $\rm (EA)$, and
  • the (red) correlation line  $y=K(x)$.




Hints:

Part 1:   Gaussian random variables without statistical bindings,
Part 2:   Gaussian random variables with statistical bindings.



Questions

1

How large is the correlation coefficient $\rho_{xy}$?

$\rho_{xy} \ = \ $

2

What is the maximum value  $C = f_{xy}(0, 0)$  of the PDF?

$C \ = \ $

3

What is the angle  $\alpha$  between ellipse major axis  $\rm (EA)$  and  $x$–axis?

$\alpha\ = \ $

$ \ \rm degrees$

4

At what values  $x_0$  and  $y_0$  respectively, does the hemline  $f_{xy}(x,y) = 0.2$  intersect the ellipse major axis?  What is the relationship between  $x_0$  and  $y_0$?

$x_0/y_0 \ = \ $

5

Which statements are true regarding the correlation line  $K(x)$ ?

The correlation line is steeper than the ellipse major axis.
The angle of  $K(x)$  with respect to  $x$–axis is about  $-35^\circ$.
The correlation line intersects all hemlines where a vertical tangent can be applied to the ellipse.


Solution

(1)  Even without specifying  $\sigma_x = \sigma_y = 1$  one could see that the standard deviations  $\sigma_x$  and  $\sigma_y$  are equal,

  • since in the exponent of $f_{xy}(x, y)$  the coefficients at  $x^2$  and  $y^2$  are equal.
  • By comparing coefficients, we thus obtain:
$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$


(2)  Using the numerical values calculated in point  (1)  we also obtain:

$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}} =\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$


(3)  The general equation is:

$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan \ (\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}{\rm ).}.$$
  • Applies  $\sigma_x = \sigma_y$  and  $\rho_{xy} \ne 0$,  then the angle is always  $\alpha = \pm 45^\circ$, where the sign is equal to the sign of  $\rho_{xy}$  .
  • In the present case  $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$ holds.


(4)  For the plotted contour line holds:

$$f_{xy}(x, y)=\frac{1}{\sqrt{2}\cdot \pi}\cdot {\rm e}^{(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=0.2\hspace{0.3cm} \rightarrow \hspace{0.3cm}{\rm e}^{-(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$
  • The angle of the ellipse major axis is  $\alpha = -45^\circ$.  Therefore  $y_0 = - x_0$  must hold. It further follows:
$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$
$$\Rightarrow \hspace{0.3cm}(\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118} \hspace{0.5cm}\rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$
  • The two intersections of the plotted contour lines with the ellipse major axis are thus at  $(+0.45, -0.45)$  and  $(-0.45, +0.45)$.
  • The quotient in both cases is  $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$.



(5)  Correct are the proposed solutions 2 and 3:

  • With  $\sigma_x = \sigma_y$  and the result of the subtask  (1)  holds for the angle of the correlation line:
$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$
  • This means:   The first statement is false and the second is true.


The following is the proof of the correctness of the last statement:

  • Solving the elliptic equation  $($with  $z = 0. 118)$,  so  $x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0$,  to  $y$  we get after solving a quadratic equation:
$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}} \hspace{0.5cm}\rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$
  • The vertical tangent results for the case that the two solutions  $y_{\rm 1, \rm 2}$  are identical.  That is:   The root expression must result in zero.
  • The solution for positive  $x$  is then:   $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$
  • Inserted into the ellipse equation one obtains für the  $y$–value of the tangent point:
$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$
$$\Rightarrow \hspace{0.3cm}y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$
  • This gives  $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}. $  But this also means:   The tangent point  $(x_{\rm T}, y_{\rm T})$  lies exactly on the correlation line  $y=K(x)=-{ x}/{\sqrt{\rm 2}}.$