Difference between revisions of "Aufgaben:Exercise 4.5: Coaxial Cable - Impulse Response"

From LNTwww
Line 1: Line 1:
 
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Koaxialkabel
 
 
}}
 
}}
  
[[File:P_ID1814__LZI_A_4_5.png|right|frame|Impulsantwort eines Koaxialkabels]]
+
[[File:P_ID1814__LZI_A_4_5.png|right|frame|Impulse response of a coaxial cable]]
Der Frequenzgang eines Koaxialkabels der Länge  $l$  ist durch folgende Formel darstellbar:
+
The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:
 
:$$H_{\rm K}(f)  = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
:$$H_{\rm K}(f)  = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
   \cdot   
 
   \cdot   
Line 10: Line 9:
 
   {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
   {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
Der erste Term dieser Gleichung ist auf die Ohmschen Verluste zurückzuführen, der zweite Term auf die Querverluste. Dominant ist jedoch der Skineffekt, der durch den dritten Term ausgedrückt wird.
+
The first term of this equation is due to the ohmic losses, the second term to the transverse losses. Dominant, however, is the skin effect, which is expressed by the third term.
  
Mit den für ein "Normalkoaxialkabel"  $\text{(2.6 mm}$  Kerndurchmesser,  $\text{9.5 mm}$  Außendurchmesser$)$  gültigen Koeffizienten
+
With the coefficients valid for a "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$   
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
   \hspace{0.05cm},
 
   \hspace{0.05cm},
 
   \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac {\rm rad}{\rm km \cdot \sqrt{\rm
 
   \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac {\rm rad}{\rm km \cdot \sqrt{\rm
 
   MHz}}\hspace{0.05cm}$$
 
   MHz}}\hspace{0.05cm}$$
lässt sich dieser Frequenzgang auch wie folgt darstellen:
+
this frequency response can also be represented as follows:
 
:$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 
:$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
Line 23: Line 22:
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
⇒   Dämpfungsverlauf  ${a}_{\rm K}(f)$  und Phasenverlauf  $b_{\rm K}(f)$  sind bis auf die Pseudoeinheiten "Np" bzw. "rad" identisch.
+
⇒   Attenuation curve  ${a}_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units "Np" and "rad", respectively.
  
  
Definiert man die charakteristische Kabeldämpfung  ${a}_{\rm *}$  bei der halben Bitrate  $($also bei  $R/2)$  und normiert die Frequenz auf  $R$,  so kann man  Digitalsysteme unterschiedlicher Bitrate und Länge einheitlich behandeln:
+
If one defines the characteristic cable attenuation  ${a}_{\rm *}$  at half the bit rate  $($i.e., at  $R/2)$  and normalizes the frequency to  $R$,  one can treat digital systems of different bit rate and length uniformly:
 
:$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2})
 
:$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2})
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 
{a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
{a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
*Der entsprechende  $\rm dB$–Wert ist um den Faktor  $8.686$  größer.   
+
*The corresponding  $\rm dB$–value is greater by a factor of  $8.686$  größer.   
*Bei einem Binärsystem gilt  $R = 1/T$, so dass sich die charakteristische Kabeldämpfung auf die Frequenz  $f = 1/(2T)$  bezieht.
+
*For a binary system,  $R = 1/T$ holds, so that the characteristic cable attenuation refers to the frequency  $f = 1/(2T)$ .
  
  
Die  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Fouriertransformation|Fouriertransformierte]]  von  $H_{\rm K}(f)$  liefert die Impulsantwort  $h_{\rm K}(t)$, die für ein Koaxialkabel mit den hier beschriebenen Näherungen in geschlossen–analytischer Form angebbar ist. Für ein Binärsystem gilt:
+
The  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Fouriertransformation|Fourier transform]]  of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$, which can be specified in closed-analytic form for a coaxial cable using the approximations described here. For a binary system holds:
 
:$$h_{\rm K}(t) =  \frac{ {a}_{\rm \star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
:$$h_{\rm K}(t) =  \frac{ {a}_{\rm \star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
   {\rm e}^{  - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi  \cdot \hspace{0.05cm} t/T)}
 
   {\rm e}^{  - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi  \cdot \hspace{0.05cm} t/T)}
   \hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
+
   \hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Die Teilaufgabe  '''(5)'''  bezieht sich auf den Empfangsgrundimpuls  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, wobei für  $g_s(t)$  ein Rechteck mit Höhe  $s_0$  und Dauer  $T$  angenommen wird.
+
Subtask  '''(5)'''  refers to the basic receiver  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, where  $g_s(t)$  is assumed to be a rectangle with height  $s_0$  and duration  $T$ .
  
  
Line 48: Line 47:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum Kapitel   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Eigenschaften von Koaxialkabeln]].
+
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
 
   
 
   
*Sie können zur Überprüfung Ihrer Ergebnisse das interaktive Applet  [[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]  benutzen.
+
*You can use the interactive applet  [[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]  to check your results.
  
  

Revision as of 16:58, 8 November 2021

Impulse response of a coaxial cable

The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:

$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

The first term of this equation is due to the ohmic losses, the second term to the transverse losses. Dominant, however, is the skin effect, which is expressed by the third term.

With the coefficients valid for a "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$ 

$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac {\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}$$

this frequency response can also be represented as follows:

$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}} \hspace{0.05cm}.$$

⇒   Attenuation curve  ${a}_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units "Np" and "rad", respectively.


If one defines the characteristic cable attenuation  ${a}_{\rm *}$  at half the bit rate  $($i.e., at  $R/2)$  and normalizes the frequency to  $R$,  one can treat digital systems of different bit rate and length uniformly:

$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{- {a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$
  • The corresponding  $\rm dB$–value is greater by a factor of  $8.686$  größer. 
  • For a binary system,  $R = 1/T$ holds, so that the characteristic cable attenuation refers to the frequency  $f = 1/(2T)$ .


The  Fourier transform  of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$, which can be specified in closed-analytic form for a coaxial cable using the approximations described here. For a binary system holds:

$$h_{\rm K}(t) = \frac{ {a}_{\rm \star}/T}{ \sqrt{2 \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot {\rm e}^{ - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm} t/T)} \hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

Subtask  (5)  refers to the basic receiver  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, where  $g_s(t)$  is assumed to be a rectangle with height  $s_0$  and duration  $T$ .




Notes:


Fragebogen

1

Wie groß ist die Länge  $l$  eines Normalkoaxialkabels, wenn sich für die Bitrate  $R = 140 \ \rm Mbit/s$  die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  ergibt?

$l \ =\ $

$\ \rm km$

2

Zu welcher Zeit  $t_{\rm max}$  besitzt  $h_{\rm K}(t)$  sein Maximum? Es gelte weiter  ${a}_{\rm \star} = 60 \ \rm dB$.

$t_{\rm max} \ = \ $

$\ \cdot T$

3

Wie groß ist der Maximalwert der Impulsantwort?

${\rm Max}\, \big [h_{\rm K}(t)\big ] \ = \ $

$\ \cdot 1/T$

4

Ab welcher Zeit  $t_{\rm 5\%}$  ist  $h_{\rm K}(t)$  kleiner als  $5\%$  des Maximums?  Berücksichtigen Sie als Näherung nur den ersten Term der angegebenen Formel.

$t_{\rm 5\%} \ = \ $

$\ \cdot T$

5

Welche Aussagen treffen für den Empfangsgrundimpuls  $g_r(t)$  zu?

$g_r(t)$  ist doppelt so breit wie  $h_{\rm K}(t)$.
Es gilt näherungsweise  $g_r(t) = s_0 \cdot T \cdot h_{\rm K}(t)$.
$g_r(t)$  kann durch einen Gaußimpuls angenähert werden.


Musterlösung

(1)  Die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  entspricht in etwa  $6.9\ \rm Np$. Deshalb muss gelten:

$$\alpha_2 \cdot l \cdot {R}/{2} = 6.9\,\,{\rm Np} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm Np}}{0.2722 \,\, {\rm Np}/({\rm km \cdot \sqrt{\rm MHz}}) \cdot \sqrt{70\,\,{\rm MHz}}}\hspace{0.15cm}\underline{ \approx 3\,\,{\rm km}} \hspace{0.05cm}.$$


(2)  Mit den Substitutionen

$$x = \frac{ t}{ T}, \hspace{0.2cm} K_1 = \frac{ {a}_{\rm \star}/T}{\sqrt{2 \pi^2 }}, \hspace{0.2cm} K_2 = \frac{ {a}_{\rm \star}^2}{2 \pi}$$

kann die Impulsantwort wie folgt beschrieben werden:

$$h_{\rm K}(x) = K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x} \hspace{0.05cm}.$$
  • Durch Nullsetzen der Ableitung folgt daraus:
$$- {3}/{2} \cdot K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_{\rm max} = {2}/{3} \cdot K_2 = \frac{{a}_{\rm \star}^2}{3 \pi} \hspace{0.05cm}.$$
  • Daraus ergibt sich für  $60 \ \rm dB$  Kabeldämpfung  $({a}_{\rm \star} \approx 6.9 \ \rm Np)$:
$$x_{\rm max} = { t_{\rm max}}/{ T}= { 6.9^2}/{(3\pi)}\hspace{0.15cm}\underline{ \approx 5 }\hspace{0.05cm}.$$


(3)  Setzt man das Ergebnis in die vorgegebene Gleichung ein, so erhält man (zur Vereinfachung verwenden wir "${a}$"anstelle von "${a}_{\rm \star}$"):

$$h_{\rm K}(t_{\rm max}) = \frac{1}{T} \cdot \frac{ {a}}{ \sqrt{2 \pi^2 \cdot {{a}^6}/{(3\pi)^3}}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{{a}^2}{2\pi} \cdot \frac{3\pi}{{\rm a}^2}\hspace{0.1cm}\right] = \frac{1}{T} \cdot \frac{1}{{a}^2}\cdot \sqrt{\frac{27 \pi }{2}} \cdot {\rm e}^{-3/2} \approx \frac{1}{T} \cdot \frac{1.453}{{a}^2} \hspace{0.05cm}.$$
  • Mit  $a = 6.9$  kommt man somit zum Endergebnis:
$${\rm Max}\,[h_{\rm K}(t)] = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline{\approx 0.03 \cdot {1}/{T}} \hspace{0.05cm}.$$


(4)  Mit dem Ergebnis aus  (3)  lautet die geeignete Bestimmungsgleichung:

$$\frac{ {a}/T}{ \sqrt{2 \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 {1}/{T} \hspace{0.15cm}{= 0.0015 \cdot {1}/{T}} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot 0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{t_{5\%}/T \approx 103.5} \hspace{0.05cm}.$$
  • Dieser Wert ist etwas zu groß, da der zweite Term  ${\rm e}^{-0.05}\approx 0.95$  vernachlässigt wurde.
  • Die exakte Berechnung liefert  $t_{\rm 5\%}/T \approx 97$.


(5)  Richtig ist der zweite Lösungsvorschlag:

  • Allgemein gilt:
$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot \int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
  • Da sich die Kanalimpulsantwort $h_{\rm K}(t)$ innerhalb einer Symboldauer nur unwesentlich ändert, kann auch geschrieben werden:
$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T.$$