Difference between revisions of "Aufgaben:Exercise 4.5: Mutual Information from 2D-PDF"

From LNTwww
m (Text replacement - "„" to """)
m (Text replacement - "value-continuous" to "continuous")
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertkontinuierlichem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Continuous_Input
 
}}
 
}}
  
[[File:P_ID2886__Inf_A_4_5_neu.png|right|frame|Vorgegebene Verbund-WDF]]
+
[[File:P_ID2886__Inf_A_4_5_neu.png|right|frame|Given joint PDF]]
Vorgegeben sind hier die drei unterschiedlichen 2D–Gebiete  $f_{XY}(x, y)$, die in der Aufgabe nach ihren Füllfarben mit
+
Given here are the three different two-dimensional regions  $f_{XY}(x, y)$,  which in the task are identified by their fill colors with
* rote Verbund-WDF,
+
* red  joint PDF,
* blaue Verbund-WDF,  und
+
* blue joint PDF,
* grüne Verbund-WDF
+
* green joint PDF,
  
  
bezeichnet werden.  Innerhalb der dargestellten Gebieten gelte jeweils  $f_{XY}(x, y) = C = \rm const.$
+
respectively.  Within each of the regions shown, let  $f_{XY}(x, y) = C = \rm const.$
  
Die Transinformation zwischen den wertkontinuierlichen Zufallsgrößen  $X$  und  $Y$  kann man zum Beispiel wie folgt berechnen:
+
For example, the mutual information between the continuous random variables  $X$  and  $Y$  can be calculated as follows:
 
:$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$
 
:$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$
  
Für die hier verwendeten differentiellen Entropien gelten die folgenden Gleichungen:
+
For the differential entropies used here, the following equations apply:
 
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x
 
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
Line 23: Line 23:
 
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big[ f_{XY}(x, y) \big]
 
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big[ f_{XY}(x, y) \big]
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
*Für die beiden Randwahrscheinlichkeitsdichtefunktionen gilt dabei:
+
*For the two marginal probability density functions, the following holds:
 
:$$f_X(x) = \hspace{-0.5cm}  \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y)  
 
:$$f_X(x) = \hspace{-0.5cm}  \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y)  
 
  \hspace{0.15cm}{\rm d}y\hspace{0.05cm},$$
 
  \hspace{0.15cm}{\rm d}y\hspace{0.05cm},$$
Line 35: Line 35:
  
  
 +
Hints:
 +
*The exercise belongs to the chapter   [[Information_Theory/AWGN_Channel_Capacity_for_Continuous_Input#Mutual_information_between_continuous_random_variables|Mutual information with continuous input]].
  
''Hinweise:''
+
*Let the following differential entropies also be given:
*Die Aufgabe gehört zum  Kapitel   [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
+
:* If  $X$  is triangularly distributed between  $x_{\rm min}$  and  $x_{\rm max}$,  then:  
 
 
*Gegeben seien zudem folgende differentielle Entropien:
 
:* Ist  $X$  dreieckverteilt zwischen  $x_{\rm min}$  und  $x_{\rm max}$, so gilt:  
 
 
::$$h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$$
 
::$$h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$$
:* Ist  $Y$  gleichverteilt zwischen  $y_{\rm min}$  und  $y_{\rm max}$, so gilt:  
+
:* If  $Y$  is equally distributed between  $y_{\rm min}$  and  $y_{\rm max}$,  then holds:
 
::$$h(Y) = {\rm log} \hspace{0.1cm} \big [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}\big ]\hspace{0.05cm}.$$
 
::$$h(Y) = {\rm log} \hspace{0.1cm} \big [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}\big ]\hspace{0.05cm}.$$
*Alle Ergebnisse sollen in "bit" angegeben werden.  Dies erreicht man mit   $\log$  ⇒  $\log_2$.  
+
*All results should be expressed in  "bit".   This is achieved with   $\log$  ⇒  $\log_2$.  
  
 
   
 
   
Line 50: Line 49:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Transinformation&nbsp; <u>der roten Verbund-WDF</u>?
+
{What is the mutual information of&nbsp; <u>the red joint PDF</u>?
 
|type="{}"}
 
|type="{}"}
 
$I(X; Y) \ = \ $ { 0. } $\ \rm bit$
 
$I(X; Y) \ = \ $ { 0. } $\ \rm bit$
  
{Wie groß ist die Transinformation&nbsp; <u>der blauen Verbund-WDF</u>?
+
{What is the mutual information of&nbsp; <u>the blue joint PDF</u>?
 
|type="{}"}
 
|type="{}"}
 
$I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$
 
$I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$
  
  
{Wie groß ist die Transinformation&nbsp; <u>der grünen Verbund-WDF</u>?
+
{What is the mutual information of&nbsp; <u>the green joint PDF</u>?
 
|type="{}"}
 
|type="{}"}
 
$I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$
 
$I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$
  
{Welche Voraussetzungen müssen die Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; gleichzeitig erfüllen, damit allgemein &nbsp;$I(X;Y)  = 1/2 \cdot \log (\rm e)$&nbsp; gilt:
+
{What conditions must the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; satisfy simultaneously for &nbsp;$I(X;Y)  = 1/2 \cdot \log (\rm e)$&nbsp; to hold in general?
 
|type="[]"}
 
|type="[]"}
+ Die Verbund-WDF &nbsp;$f_{XY}(x, y)$&nbsp; ergibt ein Parallelogramm.
+
+ The two-dimensional PDF &nbsp;$f_{XY}(x, y)$&nbsp; results in a parallelogram.
+ Eine der Zufallsgrößen&nbsp; $(X$ &nbsp;oder&nbsp; $Y)$&nbsp; ist gleichverteilt.
+
+ One of the random variables&nbsp; $(X$ &nbsp;or&nbsp; $Y)$&nbsp; is uniformly distributed.
+ Die andere Zufallsgröße&nbsp; $(Y$&nbsp; oder&nbsp; $X)$&nbsp; ist dreieckverteilt.
+
+ The other random variable&nbsp; $(Y$&nbsp; or&nbsp; $X)$&nbsp; is triangularly distributed.
  
  
Line 77: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2887__Inf_A_4_5a.png|right|frame|„Rote” Wahrscheinlichkeitsdichtefunktionen]]
+
[[File:P_ID2887__Inf_A_4_5a.png|right|frame|"Red"&nbsp; probability density functions; <br>'''!''' Note:&nbsp; Ordinate of &nbsp;$f_{Y}(y)$&nbsp; is directed to the left '''!''']]
'''(1)'''&nbsp; Bei der rechteckförmigen Verbund&ndash;WDF &nbsp;$f_{XY}(x, y)$&nbsp; gibt es  zwischen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; keine statistischen Bindungen  &nbsp; &#8658; &nbsp; $\underline{I(X;Y) = 0}$.
+
'''(1)'''&nbsp; For the rectangular two-dimensional PDF &nbsp;$f_{XY}(x, y)$&nbsp; there are no statistical dependences between&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; &nbsp; &#8658; &nbsp; $\underline{I(X;Y) = 0}$.
  
Formal lässt sich dieses Ergebnis mit der folgenden Gleichung nachweisen:
+
Formally, this result can be proved with the following equation:
 
:$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
 
:$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
*Die rote Fläche 2D&ndash;WDF &nbsp;$f_{XY}(x, y)$&nbsp; ist&nbsp; $F = 4$.&nbsp; Da &nbsp;$f_{XY}(x, y)$&nbsp; in diesem Gebiet konstant ist und das Volumen unter &nbsp;$f_{XY}(x, y)$&nbsp; gleich&nbsp; $1$&nbsp; sein muss, gilt für die Höhe&nbsp; $C = 1/F = 1/4$.  
+
*The red area of the two-dimensional PDF &nbsp;$f_{XY}(x, y)$&nbsp; is&nbsp; $F = 4$.&nbsp;  
*Daraus folgt für die differentielle Verbundentropie in "bit":
+
*Since &nbsp;$f_{XY}(x, y)$&nbsp; is constant in this area and the volume under &nbsp;$f_{XY}(x, y)$&nbsp; must be equal to&nbsp; $1$,&nbsp; the height is&nbsp; $C = 1/F = 1/4$.  
 +
*From this follows for the differential joint entropy in&nbsp; "bit":
 
:$$h(XY) \  =  \  \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
 
:$$h(XY) \  =  \  \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
 
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_{XY}(x, y) ]
 
  \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_{XY}(x, y) ]
Line 92: Line 92:
 
  \hspace{-0.6cm} f_{XY}(x, y)  
 
  \hspace{-0.6cm} f_{XY}(x, y)  
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
*Es ist berücksichtigt, das das Doppelintegral gleich&nbsp; $1$&nbsp; ist.&nbsp; Die Pseudo&ndash;Einheit "bit" korrespondiert mit dem <i>Logarithmus dualis</i> &nbsp;&#8658;&nbsp; "log<sub>2</sub>".  
+
*It is considered that the double integral is equal to&nbsp; $1$&nbsp;.&nbsp; The pseudo-unit&nbsp; "bit"&nbsp; corresponds to the&nbsp; "binary logarithm" &nbsp;&#8658;&nbsp; "log<sub>2</sub>".  
  
  
Weiterhin gilt:
+
Furthermore:
* Die Randwahrscheinlichkeitsdichtefunktionen &nbsp;$f_{X}(x)$&nbsp; und &nbsp;$f_{Y}(y)$&nbsp; sind rechteckförmig &nbsp; &#8658; &nbsp; Gleichverteilung zwischen&nbsp; $0$&nbsp; und&nbsp; $2$:
+
 
 +
* The marginal probability density functions &nbsp;$f_{X}(x)$&nbsp; and &nbsp;$f_{Y}(y)$&nbsp; are rectangular &nbsp; &#8658; &nbsp; uniform distribution between&nbsp; $0$&nbsp; and&nbsp; $2$:
 
:$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
 
:$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
* Setzt man diese Ergebnisse in die obige Gleichung ein, so erhält man:
+
[[File:P_ID2888__Inf_A_4_5b_neu.png|right|frame|"Blue"&nbsp;
 +
probability density functions]]
 +
 
 +
* Substituting these results into the above equation, we obtain:
 
:$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)}
 
:$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 104: Line 108:
  
  
[[File:P_ID2888__Inf_A_4_5b_neu.png|right|frame|„Blaue” Wahrscheinlichkeitsdichtefunktionen]]
+
'''(2)'''&nbsp; Also for this parallelogram we get&nbsp; $F = 4, \ C = 1/4$&nbsp; as well as&nbsp; $h(XY) = 2$ bit.  
'''(2)'''&nbsp; Auch bei diesem Parallelogramm ergibt sich&nbsp; $F = 4, \ C = 1/4$&nbsp; sowi&nbsp;e $h(XY) = 2$ bit.  
+
* Here, as in subtask&nbsp; '''(1)'''&nbsp;, the variable&nbsp; $Y$&nbsp; is uniformly distributed between&nbsp; $0$&nbsp; and&nbsp; $2$&nbsp;&nbsp; &rArr; &nbsp; $h(Y) = 1$ bit.
*Die Zufallsgröße&nbsp; $Y$&nbsp; ist hier wie in der Teilaufgabe&nbsp; '''(1)'''&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $2$&nbsp; gleichverteilt&nbsp; &rArr; &nbsp; $h(Y) = 1$ bit.
 
  
*Dagegen ist&nbsp; $X$&nbsp; dreieckverteilt zwischen&nbsp; $0$&nbsp; und&nbsp; $4$&nbsp; $($mit Maximum bei $2)$.&nbsp;  
+
*In contrast,&nbsp; $X$&nbsp; is triangularly distributed between&nbsp; $0$&nbsp; and&nbsp; $4$&nbsp; $($with maximum at $2)$.&nbsp;  
*Es ergibt sich hierfür die gleiche differentielle Entropie&nbsp; $h(Y)$&nbsp; wie bei einer symmetrischen Dreieckverteilung im Bereich zwischen&nbsp; $&plusmn;2$&nbsp;  (siehe Angabenblatt):
+
*This results in the same differential entropy&nbsp; $h(Y)$&nbsp; as for a symmetric triangular distribution in the range between&nbsp; $&plusmn;2$&nbsp;  (see specification sheet):
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ]
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ]
 
= 1.721 \,{\rm bit}$$
 
= 1.721 \,{\rm bit}$$
Line 115: Line 118:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
<br clear=all>
 
<br clear=all>
[[File:P_ID2889__Inf_A_4_5c_neu.png|right|frame|„Grüne” Wahrscheinlichkeitsdichtefunktionen]]
+
[[File:P_ID2889__Inf_A_4_5c_neu.png|right|frame|"„Green"&nbsp; probability density functions]]
'''(3)'''&nbsp; Bei den grünen Gegebenheiten ergeben sich folgende Eigenschaften:
+
'''(3)'''&nbsp; The following properties are obtained for the green conditions:
 
:$$F = A \cdot B \hspace{0.3cm}  \Rightarrow \hspace{0.3cm} C = \frac{1}{A \cdot B}
 
:$$F = A \cdot B \hspace{0.3cm}  \Rightarrow \hspace{0.3cm} C = \frac{1}{A \cdot B}
 
\hspace{0.05cm}\hspace{0.3cm}  
 
\hspace{0.05cm}\hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} h(XY)  =  {\rm log}_2 \hspace{0.1cm} (A \cdot B)  
 
\Rightarrow \hspace{0.3cm} h(XY)  =  {\rm log}_2 \hspace{0.1cm} (A \cdot B)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Die Zufallsgröße&nbsp; $Y$&nbsp; ist nun zwischen&nbsp; $0$&nbsp; und&nbsp; $A$&nbsp; gleichverteilt und die Zufallsgröße&nbsp; $X$&nbsp; ist  zwischen&nbsp; $0$&nbsp; und&nbsp; $B$&nbsp; dreieckverteilt:
+
*The random variable&nbsp; $Y$&nbsp; is now uniformly distributed between&nbsp; $0$&nbsp; and&nbsp; $A$&nbsp; and the random variable&nbsp; $X$&nbsp; is triangularly distributed between&nbsp; $0$&nbsp; and&nbsp; $2B$&nbsp; $($with maximum at&nbsp; $B)$:
 
:$$h(X)  \ =  \  {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e})  
 
:$$h(X)  \ =  \  {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e})  
 
\hspace{0.05cm},$$ $$
 
\hspace{0.05cm},$$ $$
 
  h(Y)  \  =  \  {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
 
  h(Y)  \  =  \  {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
*Damit ergibt sich für die Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $Y$:
+
*Thus, for the mutual information between&nbsp; $X$&nbsp; and&nbsp; $Y$:
 
:$$I(X;Y)  \  =      {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$  
 
:$$I(X;Y)  \  =      {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$  
 
:$$\Rightarrow \hspace{0.3cm} I(X;Y)  =  \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}}
 
:$$\Rightarrow \hspace{0.3cm} I(X;Y)  =  \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
[[File: P_ID2890__Inf_A_4_5d.png |right|frame|Weitere Beispiele für 2D&ndash;WDF&nbsp; $f_{XY}(x, y)$]]
+
[[File: P_ID2890__Inf_A_4_5d.png |right|frame|Other examples of 2D PDF&nbsp; $f_{XY}(x, y)$]]
*$I(X;Y)$&nbsp; somit unabhängig von den WDF&ndash;Parametern&nbsp; $A$&nbsp; und&nbsp; $B$.
+
*$I(X;Y)$&nbsp; thus independent of th PDF parameters&nbsp; $A$&nbsp; and&nbsp; $B$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
 +
'''(4)'''&nbsp; <u>All of the above conditions</u> are required.&nbsp; However, the requirements&nbsp; '''(2)'''&nbsp; and&nbsp; '''(3)'''&nbsp; are not satisfied for every parallelogram.&nbsp;
  
 +
*The adjacent graph shows two constellations, where the random variable&nbsp; $X$&nbsp; is equally distributed between&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; in each case.
 +
*For the top graph, the plotted points lie at a height &nbsp; &#8658; &nbsp; $f_{Y}(y)$&nbsp; is triangularly distributed &nbsp; &#8658; &nbsp; $I(X;Y) = 0.721$ bit.
 +
*The lower composite PDF has a different mutual information, since the two plotted points are not at the same height &nbsp; <br>&#8658; &nbsp; the PDF&nbsp; $f_{Y}(y)$&nbsp; here has a trapezoidal shape.
 +
*Feeling, I guess&nbsp; $I(X;Y) < 0.721$&nbsp; bit,&nbsp; since the two-dimensional area is more approaching a rectangle.&nbsp; If you still feel like it, so check this statement.
  
'''(4)'''&nbsp; <u>Alle genannten Voraussetzungen</u> sind erforderlich.&nbsp;
 
*Allerdings sind nicht für jedes Parallelogramm die Forderungen&nbsp; '''(2)'''&nbsp; und&nbsp; '''(3)'''&nbsp; zu erfüllen.&nbsp; Die nebenstehende Grafik zeigt zwei solche Konstellationen, wobei die Zufallsgröße&nbsp; $X$&nbsp; jeweils gleichverteilt zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; ist.
 
* Bei der oberen Grafik liegen die eingezeichneten Punkte auf einer Höhe &nbsp; &#8658; &nbsp; $f_{Y}(y)$&nbsp; ist dreieckverteilt &nbsp; &#8658; &nbsp; $I(X;Y) = 0.721$ bit.
 
*Die untere Verbund&ndash;WDF besitzt eine andere Transinformation, da die beiden Punkte nicht auf gleicher Höhe liegen &nbsp; <br>&#8658; &nbsp; die WDF&nbsp; $f_{Y}(y)$&nbsp; hat hier eine Trapezform.
 
*Gefühlsmäßig tippe ich auf&nbsp; $I(X;Y) < 0.721$&nbsp; bit, da sich das 2D&ndash;Gebiet eher einem Rechteck annähert.&nbsp; Wenn Sie noch Lust haben, so überprüfen Sie das bitte. 
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Information Theory: Exercises|^4.2 AWGN & kontinuierlicher Eingang^]]
+
[[Category:Information Theory: Exercises|^4.2 AWGN and Value-Continuous Input^]]

Latest revision as of 10:27, 11 October 2021

Given joint PDF

Given here are the three different two-dimensional regions  $f_{XY}(x, y)$,  which in the task are identified by their fill colors with

  • red joint PDF,
  • blue joint PDF,
  • green joint PDF,


respectively.  Within each of the regions shown, let  $f_{XY}(x, y) = C = \rm const.$

For example, the mutual information between the continuous random variables  $X$  and  $Y$  can be calculated as follows:

$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$

For the differential entropies used here, the following equations apply:

$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x \hspace{0.05cm},$$
$$h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.55cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} \big[f_Y(y)\big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm},$$
$$h(XY) = \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big[ f_{XY}(x, y) \big] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  • For the two marginal probability density functions, the following holds:
$$f_X(x) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}y\hspace{0.05cm},$$
$$f_Y(y) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.05cm}.$$




Hints:

  • Let the following differential entropies also be given:
  • If  $X$  is triangularly distributed between  $x_{\rm min}$  and  $x_{\rm max}$,  then:
$$h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$$
  • If  $Y$  is equally distributed between  $y_{\rm min}$  and  $y_{\rm max}$,  then holds:
$$h(Y) = {\rm log} \hspace{0.1cm} \big [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}\big ]\hspace{0.05cm}.$$
  • All results should be expressed in  "bit".   This is achieved with   $\log$  ⇒  $\log_2$.



Questions

1

What is the mutual information of  the red joint PDF?

$I(X; Y) \ = \ $

$\ \rm bit$

2

What is the mutual information of  the blue joint PDF?

$I(X; Y) \ = \ $

$\ \rm bit$

3

What is the mutual information of  the green joint PDF?

$I(X; Y) \ = \ $

$\ \rm bit$

4

What conditions must the random variables  $X$  and  $Y$  satisfy simultaneously for  $I(X;Y) = 1/2 \cdot \log (\rm e)$  to hold in general?

The two-dimensional PDF  $f_{XY}(x, y)$  results in a parallelogram.
One of the random variables  $(X$  or  $Y)$  is uniformly distributed.
The other random variable  $(Y$  or  $X)$  is triangularly distributed.


Solution

"Red"  probability density functions;
! Note:  Ordinate of  $f_{Y}(y)$  is directed to the left !

(1)  For the rectangular two-dimensional PDF  $f_{XY}(x, y)$  there are no statistical dependences between  $X$  and  $Y$    ⇒   $\underline{I(X;Y) = 0}$.

Formally, this result can be proved with the following equation:

$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
  • The red area of the two-dimensional PDF  $f_{XY}(x, y)$  is  $F = 4$. 
  • Since  $f_{XY}(x, y)$  is constant in this area and the volume under  $f_{XY}(x, y)$  must be equal to  $1$,  the height is  $C = 1/F = 1/4$.
  • From this follows for the differential joint entropy in  "bit":
$$h(XY) \ = \ \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_{XY}(x, y) ] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y$$
$$\Rightarrow \hspace{0.3cm} h(XY) \ = \ \ {\rm log}_2 \hspace{0.1cm} (4) \cdot \hspace{0.02cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
  • It is considered that the double integral is equal to  $1$ .  The pseudo-unit  "bit"  corresponds to the  "binary logarithm"  ⇒  "log2".


Furthermore:

  • The marginal probability density functions  $f_{X}(x)$  and  $f_{Y}(y)$  are rectangular   ⇒   uniform distribution between  $0$  and  $2$:
$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
"Blue"  probability density functions
  • Substituting these results into the above equation, we obtain:
$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)} \hspace{0.05cm}.$$


(2)  Also for this parallelogram we get  $F = 4, \ C = 1/4$  as well as  $h(XY) = 2$ bit.

  • Here, as in subtask  (1) , the variable  $Y$  is uniformly distributed between  $0$  and  $2$   ⇒   $h(Y) = 1$ bit.
  • In contrast,  $X$  is triangularly distributed between  $0$  and  $4$  $($with maximum at $2)$. 
  • This results in the same differential entropy  $h(Y)$  as for a symmetric triangular distribution in the range between  $±2$  (see specification sheet):
$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ] = 1.721 \,{\rm bit}$$
$$\Rightarrow \hspace{0.3cm} I(X;Y) = 1.721 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit}\hspace{0.05cm}\underline{ = 0.721 \,{\rm (bit)}} \hspace{0.05cm}.$$


"„Green"  probability density functions

(3)  The following properties are obtained for the green conditions:

$$F = A \cdot B \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \frac{1}{A \cdot B} \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} h(XY) = {\rm log}_2 \hspace{0.1cm} (A \cdot B) \hspace{0.05cm}.$$
  • The random variable  $Y$  is now uniformly distributed between  $0$  and  $A$  and the random variable  $X$  is triangularly distributed between  $0$  and  $2B$  $($with maximum at  $B)$:
$$h(X) \ = \ {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e}) \hspace{0.05cm},$$ $$ h(Y) \ = \ {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
  • Thus, for the mutual information between  $X$  and  $Y$:
$$I(X;Y) \ = {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$
$$\Rightarrow \hspace{0.3cm} I(X;Y) = \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}} \hspace{0.05cm}.$$
Other examples of 2D PDF  $f_{XY}(x, y)$
  • $I(X;Y)$  thus independent of th PDF parameters  $A$  and  $B$.






(4)  All of the above conditions are required.  However, the requirements  (2)  and  (3)  are not satisfied for every parallelogram. 

  • The adjacent graph shows two constellations, where the random variable  $X$  is equally distributed between  $0$  and  $1$  in each case.
  • For the top graph, the plotted points lie at a height   ⇒   $f_{Y}(y)$  is triangularly distributed   ⇒   $I(X;Y) = 0.721$ bit.
  • The lower composite PDF has a different mutual information, since the two plotted points are not at the same height  
    ⇒   the PDF  $f_{Y}(y)$  here has a trapezoidal shape.
  • Feeling, I guess  $I(X;Y) < 0.721$  bit,  since the two-dimensional area is more approaching a rectangle.  If you still feel like it, so check this statement.