Difference between revisions of "Aufgaben:Exercise 4.7: Weighted Sum and Difference"

From LNTwww
Line 77: Line 77:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Since the random variables  $u$  and  $v$  are zero mean  $(m = 0)$, the random variable  $x$  is also zero mean:
+
'''(1)'''  Since the random variables  $u$  and  $v$  are zero mean  $(m = 0)$,  the random variable  $x$  is also zero mean:
 
:$$m_x = (A +B) \cdot m \hspace{0.15cm}\underline{ =0}.$$
 
:$$m_x = (A +B) \cdot m \hspace{0.15cm}\underline{ =0}.$$
 
*For the variance and standard deviation:
 
*For the variance and standard deviation:
Line 84: Line 84:
  
  
'''(2)'''  Since  $u$  and  $v$  have the same standard deviation, so does  $\sigma_y =\sigma_x \hspace{0.15cm}\underline{ \approx 2.236}$.  
+
'''(2)'''  Since  $u$  and  $v$  have the same standard deviation,  so does  $\sigma_y =\sigma_x \hspace{0.15cm}\underline{ \approx 2.236}$.  
*Because  $m=0$  also  $m_y = m_x \hspace{0.15cm}\underline{ =0}.$.  
+
*Because  $m=0$  also  $m_y = m_x \hspace{0.15cm}\underline{ =0}$.  
*For mean-valued random variable  $u$  and  $v$  on the other hand, for  $m_y = (A -B) \cdot m$  adds up to a different value than for  $m_x = (A +B) \cdot m$.
+
*For mean-valued random variable  $u$  and  $v$  on the other hand,  for  $m_y = (A -B) \cdot m$  adds up to a different value than for  $m_x = (A +B) \cdot m$.
  
  
  
'''(3)'''  We assume here in the sample solution the more general case  $m \ne 0$  Then for the common moment holds:
+
'''(3)'''  We assume here in the sample solution the more general case  $m \ne 0$.  Then,  for the common moment holds:
 
:$$m_{xy} = {\rm E} \big[x \cdot y \big] = {\rm E} \big[(A \cdot u + B \cdot v) (A \cdot u - B \cdot v)\big] . $$
 
:$$m_{xy} = {\rm E} \big[x \cdot y \big] = {\rm E} \big[(A \cdot u + B \cdot v) (A \cdot u - B \cdot v)\big] . $$
  
*According to the general calculation rules for expected values, it follows:
+
*According to the general calculation rules for expected values,  it follows:
 
:$$m_{xy} = A^2 \cdot {\rm E} \big[u^2 \big] - B^2 \cdot {\rm E} \big[v^2 \big] = (A^2 - B^2)(m^2 + \sigma^2).$$
 
:$$m_{xy} = A^2 \cdot {\rm E} \big[u^2 \big] - B^2 \cdot {\rm E} \big[v^2 \big] = (A^2 - B^2)(m^2 + \sigma^2).$$
  
*This gives the covariance to.
+
*This gives the covariance to
 
:$$\mu_{xy} = m_{xy} - m_{x} \cdot m_{y}= (A^2 - B^2)(m^2 + \sigma^2) - (A + B)(A-B) \cdot m^2 = (A^2 - B^2) \cdot \sigma^2.$$
 
:$$\mu_{xy} = m_{xy} - m_{x} \cdot m_{y}= (A^2 - B^2)(m^2 + \sigma^2) - (A + B)(A-B) \cdot m^2 = (A^2 - B^2) \cdot \sigma^2.$$
  
*With  $\sigma = 1$,  $A = 1$  and  $B = 2$  we get  $\mu_{xy}  \hspace{0.15cm}\underline{ =-3}$  and this is independent of the mean  $m$  of the variables  $u$  and  $v$.
+
*With  $\sigma = 1$,  $A = 1$  and  $B = 2$  we get  $\mu_{xy}  \hspace{0.15cm}\underline{ =-3}$.  Tthis is independent of the mean  $m$  of the variables  $u$  and  $v$.
  
  
  
[[File:P_ID403__Sto_A_4_7_d_neu.png|right|frame|correlation coefficient as a function of quotient  $B/A$]]
+
[[File:P_ID403__Sto_A_4_7_d_neu.png|right|frame|correlation coefficient as a function of the quotient  $B/A$]]
'''(4)'''  The correlation coefficient is obtained as.
+
'''(4)'''  The correlation coefficient is obtained as  
 
:$$\rho_{xy} =\frac{\mu_{xy}}{\sigma_x \cdot \sigma_y} = \frac{(A^2 - B^2) \cdot \sigma^2}{(A^2 +B^2) \cdot \sigma^2}  
 
:$$\rho_{xy} =\frac{\mu_{xy}}{\sigma_x \cdot \sigma_y} = \frac{(A^2 - B^2) \cdot \sigma^2}{(A^2 +B^2) \cdot \sigma^2}  
\hspace{0.5 cm}\rightarrow \hspace{0.5 cm}\rho_{xy} =\frac{1 - (B/A)^2} {1 +(B/A)^2}.$$
+
\hspace{0.5 cm}\Rightarrow \hspace{0.5 cm}\rho_{xy} =\frac{1 - (B/A)^2} {1 +(B/A)^2}.$$
  
 
*With  $B/A = 2$  it follows  $\rho_{xy}  \hspace{0.15cm}\underline{ =-0.6}$.
 
*With  $B/A = 2$  it follows  $\rho_{xy}  \hspace{0.15cm}\underline{ =-0.6}$.
Line 113: Line 113:
  
 
'''(5)'''&nbsp; Correct are <u>statements 1, 3, and 4</u>:
 
'''(5)'''&nbsp; Correct are <u>statements 1, 3, and 4</u>:
*From&nbsp; $B= 0$&nbsp; follows&nbsp; $\rho_{xy} = 1$&nbsp; (strict correlation).&nbsp; It can be further seen that in this case&nbsp; $x = u$&nbsp; and&nbsp; $y = u$&nbsp; are identical random variables.
+
*From&nbsp; $B= 0$&nbsp; follows&nbsp; $\rho_{xy} = 1$&nbsp; ("strict correlation").&nbsp; It can be further seen that in this case&nbsp; $x = u$&nbsp; and&nbsp; $y = u$&nbsp; are identical random variables.
 
*The second statement is not true: &nbsp; For&nbsp; $A = 1$&nbsp; and&nbsp; $B= -2$&nbsp; also results&nbsp; $\rho_{xy} = -0.6$.  
 
*The second statement is not true: &nbsp; For&nbsp; $A = 1$&nbsp; and&nbsp; $B= -2$&nbsp; also results&nbsp; $\rho_{xy} = -0.6$.  
 
*So the sign of the quotient does not matter because in the equation calculated in subtask&nbsp; '''(4)''''&nbsp; the quotient&nbsp; $B/A$&nbsp; occurs only quadratically.
 
*So the sign of the quotient does not matter because in the equation calculated in subtask&nbsp; '''(4)''''&nbsp; the quotient&nbsp; $B/A$&nbsp; occurs only quadratically.
*If&nbsp; $B \gg A$, both&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are determined almost exclusively by the random variable&ouml;&ahead;e&nbsp; $v$&nbsp; and it is&nbsp; $ y \approx -x$.&nbsp; This corresponds to the correlation coefficient&nbsp; $\rho_{xy} = -1$.  
+
*If&nbsp; $B \gg A$,&nbsp; both&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are determined almost exclusively by the random variable&nbsp; $v$&nbsp; and it is&nbsp; $ y \approx -x$.&nbsp; This corresponds to the correlation coefficient&nbsp; $\rho_{xy} = -1$.  
 
*In contrast,&nbsp; $B/A = 1$&nbsp; always yields the correlation coefficient&nbsp; $\rho_{xy} = 0$&nbsp; and thus the uncorrelatedness between&nbsp; $x$&nbsp; and&nbsp; $y$.
 
*In contrast,&nbsp; $B/A = 1$&nbsp; always yields the correlation coefficient&nbsp; $\rho_{xy} = 0$&nbsp; and thus the uncorrelatedness between&nbsp; $x$&nbsp; and&nbsp; $y$.
  
  
  
'''(6)'''&nbsp; <u>Both statements correct</u> are true:
+
'''(6)'''&nbsp; <u>Both statements</u> are true:
*When&nbsp; $A=B$&nbsp; are&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; always&nbsp; $($so for any PDF of the variables $u$&nbsp; and&nbsp; $v)$&nbsp; uncorrelated.  
+
*When&nbsp; $A=B$&nbsp; &rArr; &nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are always uncorrelated&nbsp; $($for any PDF of the variables $u$&nbsp; and&nbsp; $v)$.  
 
*The new random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are therefore also distributed randomly.  
 
*The new random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are therefore also distributed randomly.  
*For Gaussian randomness, however, statistical independence follows from uncorrelatedness, and vice versa.  
+
*For Gaussian randomness,&nbsp; however,&nbsp; statistical independence follows from uncorrelatedness,&nbsp; and vice versa.  
  
  
  
[[File:P_ID404__Sto_A_4_7_g.png|right|frame|2D-PDF and Edge-PDF]]
+
[[File:P_ID404__Sto_A_4_7_g.png|right|frame|Joint PDF and edge PDFs]]
'''(7)'''&nbsp; Here, only <u>statement 1</u> is true:
+
'''(7)'''&nbsp; Here,&nbsp; only <u>statement 1</u> is true:
*The correlation coefficient results with&nbsp; $A=B= 1$&nbsp; also here to&nbsp; $\rho_{xy} = 0$.&nbsp; That is:&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are uncorrelated also here.  
+
*The correlation coefficient results with&nbsp; $A=B= 1$&nbsp; to&nbsp; $\rho_{xy} = 0$.&nbsp; That is:&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are uncorrelated.  
*On the other hand, it can be seen from the sketched two dimensional PDF that the condition of statistical independence no longer applies in the present case:  
+
*But it can be seen from the sketched two-dimensional PDF that the condition of statistical independence no longer applies in the present case:  
$$f_{xy}(x, y) \ne f_{x}(x) \cdot f_{y}(y).$$
+
:$$f_{xy}(x, y) \ne f_{x}(x) \cdot f_{y}(y).$$
  
  

Revision as of 15:42, 25 February 2022

Sum and difference of random variables

Let the random variables  $u$  and  $v$  be statistically independent of each other, each with mean  $m$  and variance  $\sigma^2$.

  • Both variables have equal probability density function  $\rm (PDF)$  and cumulative distribution function  $\rm (CDF)$.
  • Nothing is known about the course of these functions for the time being.


Now two new random variables  $x$  and  $y$  are formed according to the following equations:

$$x = A \cdot u + B \cdot v,$$
$$y= A \cdot u - B \cdot v.$$

Here,  $A$  and  $B$  denote  (any)  constant values.

  • For the subtasks  (1)  to  (4)  let   $m= 0$,   $\sigma = 1$,   $A = 1$  and  $B = 2$.
  • In subtask  (6)  $u$  and  $v$  are each uniformly distributed with  $m= 1$  and  $\sigma = 0.5$. For the constants,  $A = B = 1$.
  • For subtask  (7)  it is still valid  $A = B = 1$.  Here the random variables  $u$  and  $v$  are symmetrically two-point distributed on  $\pm$1:
$${\rm Pr}(u=+1) = {\rm Pr}(u=-1) = {\rm Pr}(v=+1) = {\rm Pr}(v=-1) =0.5.$$



Note:



Questions

1

What is the mean and the standard deviation of  $x$  for  $A = 1$  and  $B = 2$?

$m_x \ = \ $

$\sigma_x \ = \ $

2

What is the mean and the standard deviation of  $y$  for  $A = 1$  and  $B = 2$?

$m_y \ = \ $

$\sigma_y \ = \ $

3

Calculate the covariance  $\mu_{xy}$.  What value results for  $A = 1$  and  $B = 2$?

$\mu_{xy} \ = \ $

4

Calculate the correlation coefficient  $\rho_{xy}$  as a function of the quotient  $B/A$.  What coefficient results for  $A = 1$  and  $B = 2$?

$\rho_{xy}\ = \ $

5

Which of the following statements is always true?

For  $B = 0$  the random variables  $x$  and  $y$  are strictly correlated.
It holds  $\rho_{xy}(-B/A) = -\rho_{xy}(B/A)$.
In the limiting case  $B/A \to \infty$  the random variables  $x$  and  $y$  are strictly correlated.
For  $A =B$  the random variables $x$  and  $y$  are uncorrelated.

6

Which statements are true if  $A =B = 1$  holds and  $x$  and  $y$  are each Gaussian distributed with mean  $m = 1$  and standard deviation  $\sigma = 0.5$?

The random variables $x$  and  $y$  are uncorrelated.
The random variables $x$  and  $y$  are statistically independent.

7

Which statements are true if  $x$  and  $y$  are symmetrically two-point distributed and  $A =B = 1$  holds?

The random variables $x$  and  $y$  are uncorrelated.
The random variables $x$  and  $y$  are statistically independent.


Solution

(1)  Since the random variables  $u$  and  $v$  are zero mean  $(m = 0)$,  the random variable  $x$  is also zero mean:

$$m_x = (A +B) \cdot m \hspace{0.15cm}\underline{ =0}.$$
  • For the variance and standard deviation:
$$\sigma_x^2 = (A^2 +B^2) \cdot \sigma^2 = 5; \hspace{0.5cm} \sigma_x = \sqrt{5}\hspace{0.15cm}\underline{ \approx 2.236}.$$


(2)  Since  $u$  and  $v$  have the same standard deviation,  so does  $\sigma_y =\sigma_x \hspace{0.15cm}\underline{ \approx 2.236}$.

  • Because  $m=0$  also  $m_y = m_x \hspace{0.15cm}\underline{ =0}$.
  • For mean-valued random variable  $u$  and  $v$  on the other hand,  for  $m_y = (A -B) \cdot m$  adds up to a different value than for  $m_x = (A +B) \cdot m$.


(3)  We assume here in the sample solution the more general case  $m \ne 0$.  Then,  for the common moment holds:

$$m_{xy} = {\rm E} \big[x \cdot y \big] = {\rm E} \big[(A \cdot u + B \cdot v) (A \cdot u - B \cdot v)\big] . $$
  • According to the general calculation rules for expected values,  it follows:
$$m_{xy} = A^2 \cdot {\rm E} \big[u^2 \big] - B^2 \cdot {\rm E} \big[v^2 \big] = (A^2 - B^2)(m^2 + \sigma^2).$$
  • This gives the covariance to
$$\mu_{xy} = m_{xy} - m_{x} \cdot m_{y}= (A^2 - B^2)(m^2 + \sigma^2) - (A + B)(A-B) \cdot m^2 = (A^2 - B^2) \cdot \sigma^2.$$
  • With  $\sigma = 1$,  $A = 1$  and  $B = 2$  we get  $\mu_{xy} \hspace{0.15cm}\underline{ =-3}$.  Tthis is independent of the mean  $m$  of the variables  $u$  and  $v$.


correlation coefficient as a function of the quotient  $B/A$

(4)  The correlation coefficient is obtained as

$$\rho_{xy} =\frac{\mu_{xy}}{\sigma_x \cdot \sigma_y} = \frac{(A^2 - B^2) \cdot \sigma^2}{(A^2 +B^2) \cdot \sigma^2} \hspace{0.5 cm}\Rightarrow \hspace{0.5 cm}\rho_{xy} =\frac{1 - (B/A)^2} {1 +(B/A)^2}.$$
  • With  $B/A = 2$  it follows  $\rho_{xy} \hspace{0.15cm}\underline{ =-0.6}$.


(5)  Correct are statements 1, 3, and 4:

  • From  $B= 0$  follows  $\rho_{xy} = 1$  ("strict correlation").  It can be further seen that in this case  $x = u$  and  $y = u$  are identical random variables.
  • The second statement is not true:   For  $A = 1$  and  $B= -2$  also results  $\rho_{xy} = -0.6$.
  • So the sign of the quotient does not matter because in the equation calculated in subtask  (4)'  the quotient  $B/A$  occurs only quadratically.
  • If  $B \gg A$,  both  $x$  and  $y$  are determined almost exclusively by the random variable  $v$  and it is  $ y \approx -x$.  This corresponds to the correlation coefficient  $\rho_{xy} = -1$.
  • In contrast,  $B/A = 1$  always yields the correlation coefficient  $\rho_{xy} = 0$  and thus the uncorrelatedness between  $x$  and  $y$.


(6)  Both statements are true:

  • When  $A=B$  ⇒   $x$  and  $y$  are always uncorrelated  $($for any PDF of the variables $u$  and  $v)$.
  • The new random variables  $x$  and  $y$  are therefore also distributed randomly.
  • For Gaussian randomness,  however,  statistical independence follows from uncorrelatedness,  and vice versa.


Joint PDF and edge PDFs

(7)  Here,  only statement 1 is true:

  • The correlation coefficient results with  $A=B= 1$  to  $\rho_{xy} = 0$.  That is:  $x$  and  $y$  are uncorrelated.
  • But it can be seen from the sketched two-dimensional PDF that the condition of statistical independence no longer applies in the present case:
$$f_{xy}(x, y) \ne f_{x}(x) \cdot f_{y}(y).$$