Difference between revisions of "Aufgaben:Exercise 4.8: HSDPA and HSUPA"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1983__Bei_A_4_8.png|right|frame|Übersicht zu HSDPA und HSUPA]]
+
[[File:P_ID1983__Bei_A_4_8.png|right|frame|Overview of HSDPA and HSUPA]]
Um eine bessere Dienstgüte zu erreichen, wurde der UMTS–Standard Release  $99$  weiter entwickelt. Die wichtigsten Weiterentwicklungen waren:
+
To achieve better quality of service, the UMTS Release  $99$  standard was further developed. The most important further developments were:
*UMTS Release  $5$  mit  '''HSDPA''' (2002),
+
*UMTS Release  $5$  with  '''HSDPA''' (2002),
*UMTS Release  $6$  mit  '''HSUPA''' (2004).
+
*UMTS Release  $6$  with  '''HSUPA''' (2004).
  
  
Zusammengefasst werden diese Entwicklungen als  '''High–Speed Packet Access'''  (HSPA).
+
Collectively, these developments are known as  '''High-Speed Packet Access'''  (HSPA).
  
Das Schaubild zeigt einige Eigenschaften von HSDPA und HSUPA, die besonders zur Steigerung der Leistungsfähigkeit beitragen:
+
The chart shows some of the features of HSDPA and HSUPA that particularly contribute to the increase in performance:
*Beide nutzen  ''Hybrid Automatic Repeat Request''  (HARQ) und  ''Node B Scheduling''.
+
*Both use  ''Hybrid Automatic Repeat Request''  (HARQ) and  ''Node B Scheduling''.
*Mit HSDPA wurde der Hochgeschwindigkeits–Transportkanal  '''HS–PDSCH'''  (''High–Speed Physical Downlink Shared Channel'')  neu eingeführt, der von mehreren Nutzern gemeinsam belegt wird und die simultane Übertragung gleicher Daten an viele Teilnehmer ermöglicht.
+
*With HSDPA, the high-speed transport channel  '''HS-PDSCH'''  (''High-Speed Physical Downlink Shared Channel'')  was newly introduced, which is shared by multiple users and allows simultaneous transmission of the same data to many subscribers.
*Beim HSUPA–Standard gibt es den zusätzlichen Transportkanal  ''Enhanced Dedicated Channel''  ('''E–DCH'''). Dieser minimiert unter anderem den negativen Einfluss von Anwendungen mit sehr intensivem bzw. stark unterschiedlichem Datenaufkommen.
+
*In the HSUPA standard, there is the additional transport channel  ''Enhanced Dedicated Channel'''  ('''E-DCH'''). Among other things, this minimizes the negative impact of applications with very intensive or highly varying data volumes.
*Bei HSPA wird eine adaptive Modulation und Codierung verwendet; die Übertragungsrate wird entsprechend angepasst.  
+
*In HSPA, adaptive modulation and coding is used; the transmission rate is adjusted accordingly.  
*Bei guten Bedingungen wird eine  $\rm 16–QAM$  $(4$ bit pro Symbol$)$  bzw.  $64$–QAM  $(6$ bit pro Symbol$)$  verwendet, bei schlechteren Bedingungen nur  $\rm 4–QAM\ (QPSK)$.
+
*In good conditions, a  $\rm 16-QAM$  $(4$ bit per symbol$)$  or  $64$-QAM  $(6$ bit per symbol$)$  is used, in worse conditions only  $\rm 4-QAM\ (QPSK)$.
*Die maximal erreichbare Bitrate hängt von der Leistungsfähigkeit des Empfängers ab, aber auch vom  ''Transportformat und den Ressourcenkombinationen''  $ \text{(TFRC)}$.
+
*The maximum achievable bit rate depends on receiver performance, but also on  ''transport format and resource combinations''  $\text{(TFRC)}$.
  
  
Von den zehn spezifizierten TFRC–Klassen seien hier willkürlich nur einige aufgeführt:
+
Of the ten specified TFRC classes, only a few are listed here arbitrarily:
*$\text{TFRC2:}$   $\rm 4–QAM\ (QPSK)$  mit Coderate  $R_{\rm C} =1/2$   ⇒   Bitrate $240 \ \rm kbit/s$,
+
*$\text{TFRC2:}$   $\rm 4-QAM\ (QPSK)$  with code rate  $R_{\rm C} =1/2$   ⇒   bit rate $240 \rm kbit/s$,
*$\text{TFRC4:}$   $\rm 16–QAM$, mit Coderate  $R_{\rm C} =1/2$   ⇒   Bitrate $480 \ \rm kbit/s$,
+
*$\text{TFRC4:}$   $\rm 16-QAM$, with code rate  $R_{\rm C} =1/2$   ⇒   bit rate $480 \rm kbit/s$,
*$\text{TFRC8:}$   $\rm 64–QAM$, mit Coderate  $R_{\rm C} =3/4$   ⇒   Bitrate $1080 \ \rm kbit/s$.
+
*$\text{TFRC8:}$   $\rm 64-QAM$, with code rate  $R_{\rm C} =3/4$   ⇒   bit rate $1080 \rm kbit/s$.
  
  
Auf andere TFRC–Klassen wird in den Teilaufgaben  '''(4)'''  und  '''(5)'''  eingegangen.
+
Other TFRC classes are discussed in subtasks  '''(4)'''  and  '''(5)''' .
  
  
Line 33: Line 33:
  
  
''Hinweis:''
+
Hints:  
*Die Aufgabe gehört zum Kapitel  [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS|Weiterentwicklungen von UMTS]].
+
*This exercise belongs to the chapter  [[Examples_of_Communication_Systems/Further_Developments_of_UMTS|"Further Developments of UMTS"]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Standard erlaubt die höchsten Datenraten?
+
{Which standard allows the highest data rates?
 
|type="[]"}
 
|type="[]"}
 
- UMTS (Release&nbsp; $99$),
 
- UMTS (Release&nbsp; $99$),
Line 47: Line 47:
 
- HSUPA.
 
- HSUPA.
  
{Was versteht man unter&nbsp; $\rm HARQ$&nbsp; und was wird damit erreicht?
+
{What is meant by&nbsp; $\rm HARQ$&nbsp; and what does it achieve?
 
|type="[]"}
 
|type="[]"}
+ Die Übertragung eines Rahmens startet erst nach Auswertung der gesendeten Kontrolldaten durch den Empfänger.
+
+ Transmission of a frame starts only after evaluation of the sent control data by the receiver.
+ Bei fehlerfreier Übertragung wird eine positive Quittung versendet, ansonsten ein NACK&nbsp; (''Non Acknowledgement'').
+
+ If the transmission is error-free, a positive acknowledgement is sent, otherwise a NACK&nbsp; (''Non Acknowledgement'').
- Die erreichbare Datenrate wird durch HARQ herabgesetzt, wenn man vom AWGN–Kanal und gleichem&nbsp; $E_{\rm B}/N_{0}$ ausgeht.
+
- The achievable data rate is lowered by HARQ, assuming the AWGN channel and equal&nbsp; $E_{\rm B}/N_{0}$.
  
{Was versteht man unter&nbsp; $\rm Node \ B \ Scheduling$&nbsp;? Was erreicht man damit?
+
{What is meant by&nbsp; $\rm Node \ B \ Scheduling$&nbsp;? What can be achieved with it?
 
|type="[]"}
 
|type="[]"}
+ Zuweisung von Prioritäten an die einzelnen Datenrahmen.
+
+ Assigning priorities to the individual data frames.
+ Der Nutzer mit höchster Priorität bekommt den besten Kanal.
+
+ The user with the highest priority gets the best channel.
+ Durch Scheduling wird die Zellenkapazität signifikant größer.
+
+ Scheduling significantly increases the cell capacity.
  
{Wie groß ist die Bitrate von&nbsp; $\rm TFRC3$&nbsp; $($QPSK, Coderate&nbsp; $R_{\rm C} =3/4)$&nbsp;?
+
{What is the bit rate of&nbsp; $\rm TFRC3$&nbsp; $($QPSK, Coderate&nbsp; $R_{\rm C} =3/4)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 360 3% } $\ \rm kbit/s$
 
$R_{\rm B} \ = \ $ { 360 3% } $\ \rm kbit/s$
  
{Wie groß ist die Bitrate von&nbsp; $\rm TFRC10$&nbsp; $($64–QAM, Coderate&nbsp; $R_{\rm C} =1)$&nbsp;?
+
{What is the bit rate of&nbsp; $\rm TFRC10$&nbsp; $($64-QAM, code rate&nbsp; $R_{\rm C} =1)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 1440 3% } $\ \rm kbit/s$
 
$R_{\rm B} \ = \ $ { 1440 3% } $\ \rm kbit/s$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>.:
+
'''(1)'''&nbsp; Correct is <u>solution suggestion 2</u>.:
*Die Datenübertragungsrate beträgt beim herkömmlichen UMTS zwischen&nbsp; $144 \ \rm kbit/s$&nbsp; und&nbsp; $2 \ \rm Mbit/s$.  
+
*For conventional UMTS, the data transfer rate is between&nbsp; $144 \ \rm kbit/s$&nbsp; and&nbsp; $2 \ \rm Mbit/s$.  
*Für den HSDPA (die Abkürzung steht für ''High–Speed Downlink Packet Access'') werden Datenraten zwischen&nbsp; $500 \ \rm kbit/s$&nbsp; und&nbsp; $3.6 \ \rm Mbit/s$&nbsp; angegeben, und als Grenzwert sogar&nbsp; $14.4 \ \rm Mbit/s$.
+
*For HSDPA (the abbreviation stands for ''High-Speed Downlink Packet Access''), data rates between&nbsp; $500 \ \rm kbit/s$&nbsp; and&nbsp; $3.6 \ \rm Mbit/s$&nbsp; are specified, and as a limit even&nbsp; $14.4 \ \rm Mbit/s$.
*HSUPA (''High–Speed Uplink Packet Access'') bezieht sich dagegen auf den Aufwärtskanal, der stets eine kleinere Datenrate als der Downlink aufweist. In der Praxis werden Datenraten bis&nbsp; $800 \ \rm kbit/s$&nbsp; erreicht, der theoretische Grenzwert liegt bei&nbsp; $5.8 \ \rm Mbit/s$.  
+
*HSUPA (''High-Speed Uplink Packet Access''), on the other hand, refers to the uplink channel, which always has a lower data rate than the downlink. In practice, data rates up to&nbsp; $800 \ \rm kbit/s$&nbsp; are achieved, the theoretical limit being&nbsp; $5.8 \ \rm Mbit/s$.  
  
  
  
'''(2)'''&nbsp; Die <u>beiden ersten Aussagen</u> sind richtig:  
+
'''(2)'''&nbsp; The <u>first two statements</u> are correct:  
*Eine detaillierte Beschreibung des HARQ–Verfahrens finden Sie im&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling|Theorieteil]].  
+
*For a detailed description of the HARQ procedure, see the&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_UMTS#HARQ_procedure_and_.22Node_B_Scheduling.22|"theory section"]].  
*Nicht richtig ist dagegen die Aussage 3. Das&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling|Diagramm]]&nbsp; im Theorieteil zeigt vielmehr, dass für&nbsp; $10 \cdot {\rm lg} E_{\rm B}/N_{0} = 0 \ \rm dB$&nbsp; (AWGN–Kanal) die Datenrate von&nbsp; $600 \ \rm kbit/s$&nbsp; auf nahezu&nbsp; $800 \ \rm kbit/s$&nbsp; vergrößert werden kann.  
+
*In contrast, statement 3 is not correct. The&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_UMTS#HARQ_procedure_and_.22Node_B_Scheduling.22 |"Diagram"]]&nbsp; in the theory part rather shows that for&nbsp; $10 \cdot {\rm lg} E_{\rm B}/N_{0} = 0 \ \rm dB$&nbsp; (AWGN channel) the data rate can be increased from&nbsp; $600 \ \rm kbit/s$&nbsp; to nearly&nbsp; $800 \ \rm kbit/s$&nbsp; .  
*Unterhalb von&nbsp; $-2 \ \rm dB$&nbsp; ist ausschließlich mit HARQ eine brauchbare Übertragung möglich. Bei guten Kanälen&nbsp; $(E_{\rm B}/N_{0} > 2&nbsp; \ \rm dB)$ ist HARQ dagegen nicht erforderlich.
+
*Below&nbsp; $-2 \ \rm dB$&nbsp; usable transmission is possible exclusively with HARQ. In contrast, for good channels&nbsp; $(E_{\rm B}/N_{0} > 2&nbsp; \ \rm dB)$, HARQ is not required.
  
  
  
'''(3)'''&nbsp; <u>Alle Aussagen sind richtig</u>. Weitere Hinweise zum ''Node B Scheduling'' finden Sie im [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling|Theorieteil]].
+
'''(3)'''&nbsp; <u>All statements are correct</u>. For further guidance on ''Node B Scheduling'', see [[Examples_of_Communication_Systems/Further_Developments_of_UMTS#HARQ_procedure_and_.22Node_B_Scheduling.22|"theory section"]].
  
  
  
'''(4)'''&nbsp; Die Bitrate&nbsp; $R_{\rm B}\hspace{0.15cm} \underline{= 360 \ \rm kbit/s}$&nbsp; ist wegen der größeren Coderate um den Faktor&nbsp; $(3/4)/(1/2) = 1.5$&nbsp; größer als die Bitrate von TFRC2.
+
'''(4)'''&nbsp; The bitrate&nbsp; $R_{\rm B}\hspace{0.15cm} \underline{= 360 \rm kbit/s}$&nbsp; is larger than the bit rate of TFRC2 by a factor&nbsp; $(3/4)/(1/2) = 1.5$&nbsp; because of the larger code rate.
  
  
  
 
'''(5)'''&nbsp;  
 
'''(5)'''&nbsp;  
*Mit der  Coderate&nbsp; $R_{\rm C} =1$&nbsp; würde sich bei QPSK&nbsp; $(2 \ \rm bit \ pro \ Symbol)$&nbsp; die Bitrate&nbsp; $480 \ \rm kbit/s$&nbsp; ergeben.  
+
*With the code rate&nbsp; $R_{\rm C} =1$&nbsp;, QPSK&nbsp; $(2 \ \rm bit \ per \ symbol)$&nbsp; would result in the bit rate&nbsp; $480 \ \rm kbit/s$&nbsp;.  
  
*Bei&nbsp; $64$–QAM ($6 \ \rm bit$ pro Symbol)&nbsp; ist der Wert dreimal so groß: &nbsp; $R_{\rm B} \hspace{0.15cm}\underline{= 1440 \ \rm kbit/s}$.
+
*For&nbsp; $64$-QAM ($6 \ \rm bit$ per symbol)&nbsp; the value is three times: &nbsp; $R_{\rm B} \hspace{0.15cm}\underline{= 1440 \ \rm kbit/s}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 21:49, 2 March 2023

Overview of HSDPA and HSUPA

To achieve better quality of service, the UMTS Release  $99$  standard was further developed. The most important further developments were:

  • UMTS Release  $5$  with  HSDPA (2002),
  • UMTS Release  $6$  with  HSUPA (2004).


Collectively, these developments are known as  High-Speed Packet Access  (HSPA).

The chart shows some of the features of HSDPA and HSUPA that particularly contribute to the increase in performance:

  • Both use  Hybrid Automatic Repeat Request  (HARQ) and  Node B Scheduling.
  • With HSDPA, the high-speed transport channel  HS-PDSCH  (High-Speed Physical Downlink Shared Channel)  was newly introduced, which is shared by multiple users and allows simultaneous transmission of the same data to many subscribers.
  • In the HSUPA standard, there is the additional transport channel  Enhanced Dedicated Channel  ('E-DCH). Among other things, this minimizes the negative impact of applications with very intensive or highly varying data volumes.
  • In HSPA, adaptive modulation and coding is used; the transmission rate is adjusted accordingly.
  • In good conditions, a  $\rm 16-QAM$  $(4$ bit per symbol$)$  or  $64$-QAM  $(6$ bit per symbol$)$  is used, in worse conditions only  $\rm 4-QAM\ (QPSK)$.
  • The maximum achievable bit rate depends on receiver performance, but also on  transport format and resource combinations  $\text{(TFRC)}$.


Of the ten specified TFRC classes, only a few are listed here arbitrarily:

  • $\text{TFRC2:}$   $\rm 4-QAM\ (QPSK)$  with code rate  $R_{\rm C} =1/2$   ⇒   bit rate $240 \rm kbit/s$,
  • $\text{TFRC4:}$   $\rm 16-QAM$, with code rate  $R_{\rm C} =1/2$   ⇒   bit rate $480 \rm kbit/s$,
  • $\text{TFRC8:}$   $\rm 64-QAM$, with code rate  $R_{\rm C} =3/4$   ⇒   bit rate $1080 \rm kbit/s$.


Other TFRC classes are discussed in subtasks  (4)  and  (5) .




Hints:


Questions

1

Which standard allows the highest data rates?

UMTS (Release  $99$),
HSDPA,
HSUPA.

2

What is meant by  $\rm HARQ$  and what does it achieve?

Transmission of a frame starts only after evaluation of the sent control data by the receiver.
If the transmission is error-free, a positive acknowledgement is sent, otherwise a NACK  (Non Acknowledgement).
The achievable data rate is lowered by HARQ, assuming the AWGN channel and equal  $E_{\rm B}/N_{0}$.

3

What is meant by  $\rm Node \ B \ Scheduling$ ? What can be achieved with it?

Assigning priorities to the individual data frames.
The user with the highest priority gets the best channel.
Scheduling significantly increases the cell capacity.

4

What is the bit rate of  $\rm TFRC3$  $($QPSK, Coderate  $R_{\rm C} =3/4)$ ?

$R_{\rm B} \ = \ $

$\ \rm kbit/s$

5

What is the bit rate of  $\rm TFRC10$  $($64-QAM, code rate  $R_{\rm C} =1)$ ?

$R_{\rm B} \ = \ $

$\ \rm kbit/s$


Solution

(1)  Correct is solution suggestion 2.:

  • For conventional UMTS, the data transfer rate is between  $144 \ \rm kbit/s$  and  $2 \ \rm Mbit/s$.
  • For HSDPA (the abbreviation stands for High-Speed Downlink Packet Access), data rates between  $500 \ \rm kbit/s$  and  $3.6 \ \rm Mbit/s$  are specified, and as a limit even  $14.4 \ \rm Mbit/s$.
  • HSUPA (High-Speed Uplink Packet Access), on the other hand, refers to the uplink channel, which always has a lower data rate than the downlink. In practice, data rates up to  $800 \ \rm kbit/s$  are achieved, the theoretical limit being  $5.8 \ \rm Mbit/s$.


(2)  The first two statements are correct:

  • For a detailed description of the HARQ procedure, see the  "theory section".
  • In contrast, statement 3 is not correct. The  "Diagram"  in the theory part rather shows that for  $10 \cdot {\rm lg} E_{\rm B}/N_{0} = 0 \ \rm dB$  (AWGN channel) the data rate can be increased from  $600 \ \rm kbit/s$  to nearly  $800 \ \rm kbit/s$  .
  • Below  $-2 \ \rm dB$  usable transmission is possible exclusively with HARQ. In contrast, for good channels  $(E_{\rm B}/N_{0} > 2  \ \rm dB)$, HARQ is not required.


(3)  All statements are correct. For further guidance on Node B Scheduling, see "theory section".


(4)  The bitrate  $R_{\rm B}\hspace{0.15cm} \underline{= 360 \rm kbit/s}$  is larger than the bit rate of TFRC2 by a factor  $(3/4)/(1/2) = 1.5$  because of the larger code rate.


(5) 

  • With the code rate  $R_{\rm C} =1$ , QPSK  $(2 \ \rm bit \ per \ symbol)$  would result in the bit rate  $480 \ \rm kbit/s$ .
  • For  $64$-QAM ($6 \ \rm bit$ per symbol)  the value is three times:   $R_{\rm B} \hspace{0.15cm}\underline{= 1440 \ \rm kbit/s}$.