Difference between revisions of "Aufgaben:Exercise 4.8: Numerical Analysis of the AWGN Channel Capacity"

From LNTwww
 
(32 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input
 
}}
 
}}
  
[[File:P_ID2936__Inf_A_4_8_Tab.png|right|]]
+
[[File:P_ID2936__Inf_A_4_8_Tab.png|right|frame|$C$  as a function of  $E_{\rm S}/{N_0}$]]
Für die Kanalkapazität <i>C</i> des AWGN&ndash;Kanals als obere Schranke für die Coderate <i>R</i> bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen :
+
There are two different equations for the channel capacity&nbsp; $C$&nbsp; of the AWGN channel as an upper bound for the code rate&nbsp; $R$&nbsp; in digital signal transmission:
  
'''Kanalkapazität <i>C</i> in Abhängigkeit von <i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>: '''
 
$$C( E_{\rm S}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  .$$
 
Hierbei sind folgende Abkürzungen verwendet:
 
:* <i>E</i><sub>S</sub>: die Energie pro Symbol des Digitalsignals,
 
:* <i>N</i><sub>0</sub>: die AWGN&ndash;Rauschleistungsdichte.
 
  
'''Kanalkapazität <i>C</i> in Abhängigkeit von <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>:'''
+
$\text{Channel capacity as a function of energy per symbol}$:
$$C( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
+
:$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0}) .$$
 +
Here, the following abbreviations are used:
 +
* $E_{\rm S}$&nbsp; denotes the (average) energy per symbol of the digital signal,
 +
* $N_0$&nbsp; indicates the AWGN noise power density.
  
Berücksichtigt ist der Zusammenhang <i>E</i><sub>S</sub> = <i>R</i> &middot; <i>E</i><sub>B</sub>, wobei <i>R</i> die Coderate der bestmöglichen Kanalcodierung angibt. Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> möglich, so lange <i>R</i> &#8804; <i>C</i> gilt &nbsp;&#8658;&nbsp;  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|''Kanalcodierungstheorem von Shannon.''']]
 
  
Durch die Tabelle vorgegeben ist der Kurvenverlauf <i>C</i>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>). Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung.
 
  
 +
$\text{Channel capacity as a function of energy per bit}$:
 +
:$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
  
''Hinweise:''
+
*The relation &nbsp;$E_{\rm S} = R \cdot E_{\rm B}$&nbsp; has to be considered,&nbsp; where &nbsp;$R$&nbsp; is the code rate of the best possible channel coding.
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
+
*Error-free transmission&nbsp; (with optimal code)&nbsp; is possible for the given &nbsp;$E_{\rm B}/N_0$&nbsp; as long as &nbsp;$R \le C$&nbsp; &nbsp; &#8658; &nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Definition_and_meaning_of_channel_capacity|Shannon's channel coding theorem ]]&nbsp;holds.  
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]].
 
*Da die Ergebnisse in &bdquo;bit&rdquo; angegeben werden sollen, wird in den Gleichungen  &bdquo;log&rdquo; &nbsp;&#8658;&nbsp; &bdquo;log<sub>2</sub>&rdquo; verwendet.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
'''Hinweis'''
 
  
:* Die Aufgabe gehört zum Themengebiet von [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''Kapitel 4.3.''']]
+
Given by the table is the curve of channel capacity as a function of &nbsp;$E_{\rm S}/N_0$.&nbsp; The focus of this exercise is the numerical evaluation of the second equation.
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input|AWGN channel capacity for discrete value input]].
 +
*Reference is made in particular to the pages&nbsp;
 +
**[[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input#The_channel_capacity_.7F.27.22.60UNIQ-MathJax81-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax82-QINU.60.22.27.7F|The channel capacity $C$ as a function of $E_{\rm S}/{N_0}$]],
 +
**[[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax128-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax129-QINU.60.22.27.7F|The channel capacity $C$ as a function of $E_{\rm B}/{N_0}$]].
 +
*Since the results are to be expressed in&nbsp; "bit",&nbsp; "log" &nbsp; &#8658; &nbsp; "log<sub>2</sub>"&nbsp; is used in the equations.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichungen beschreiben den Zusammenhang zwischen <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> und der Rate <i>R</i> beim AWGN&ndash;Kanal exakt?
+
{Which equations accurately describe the relationship between &nbsp;$E_{\rm B}/{N_0}$&nbsp; and the rate&nbsp; $R$&nbsp; for the AWGN channel?
 
|type="[]"}
 
|type="[]"}
+ <i>R</i> = 1/2 &middot; log<sub>2</sub> (1 + 2 &middot; <i>R</i> &middot; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>),
+
+ &nbsp; $R = 1/2 \cdot \log_2  (1 + 2 \cdot  R \cdot E_{\rm B}/{N_0})$.
+ 2<sup>2</sup><sup><i>R</i></sup> = 1 + 2 &middot; <i>R</i> &middot; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>,
+
+ &nbsp; $2^{2R} = 1 + 2 \cdot  R \cdot E_{\rm B}/{N_0}$.
+ <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = (2<sup>2</sup><sup><i>R</i></sup> &ndash;1)/(2<i>R</i>).
+
+ &nbsp; $E_{\rm B}/{N_0} = (2^{2R} -1)/(2R) $.
  
  
{Geben Sie den kleinstmöglichen Wert für <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> an, mit dem man über den AWGN&ndash;Kanal noch fehlerfrei übertragen kann.
+
{Specify the smallest possible value for &nbsp;$E_{\rm B}/{N_0}$&nbsp; that can still be used to transmit over the AWGN channel without errors.
 
|type="{}"}
 
|type="{}"}
$Min [EB/N0]$ = { 0.693 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 0.693 3% }
  
{Welche Ergebnis erhält man in dB?
+
{Which result is obtained in&nbsp; $\rm dB$?
 
|type="{}"}
 
|type="{}"}
$Min[10 · lg (EB/N0)]$ = { 1.59 3% }
+
$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $ { -1.62--0.156 } $ \ \rm dB$
  
  
{Geben Sie die AWGN&ndash;Kanalkapazität für 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB an.
+
{Give the AWGN channel capacity&nbsp; $C$&nbsp; for &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0$&nbsp; dB.
 
|type="{}"}
 
|type="{}"}
$10 · lg (EB/N0) = 0 dB:  C$ = { 0.5 3% }
+
$C \ = \ $ { 0.5 3% } $ \ \rm bit/channel\:use$
 
 
  
{Geben Sie das erforderliche <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> für fehlerfreie Übertragung mit <i>R</i> = 1 an. <u>Hinweis:</u> Die Lösung findet man in der Tabelle auf der Angabenseite.
+
{Specify the required&nbsp; $E_{\rm B}/{N_0}$&nbsp; for error-free transmission with&nbsp; $R = 1$&nbsp;. &nbsp; <br>Note: The solution can be found in the table on the information page.
 
|type="{}"}
 
|type="{}"}
$R = 1:  Min [EB/N0]$ = { 1.5 3% }
+
$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $ { 1.5 3% }
  
  
{Wie kann ein Punkt der <i>C</i>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&ndash;Kurve einfacher ermittelt werden?
+
{How can a point of the &nbsp;$C(E_{\rm B}/{N_0})$&nbsp; curve be determined more easily?
|type="[]"}
+
|type="()"}
- Berechnung der Kanalkapazität <i>C</i> für das vorgegebene <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>.
+
- Calculation of the channel capacity&nbsp; $C$&nbsp; for the given &nbsp;$E_{\rm B}/{N_0}$.
+ Berechnung des  erforderlichen <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> für das vorgegebene <i>C</i>.
+
+ Calculation of the required &nbsp;$E_{\rm B}/{N_0}$&nbsp; for the given&nbsp; $C$.
  
  
Line 69: Line 77:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ausgehend von der Gleichung
+
'''(1)'''&nbsp; <u>All proposed solutions</u> are correct:
$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot E_{\rm S}}/{N_0}) $$
+
*Based on the equation
erhält man mit <i>C</i> = <i>R</i> und <i>E</i><sub>S</sub> = <i>R</i> &middot; <i>E</i><sub>B</sub> die Gleichung gemäß Lösungsvorschlag 1:
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot E_{\rm S}}/{N_0}) $$
$$R = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
+
:we obtain with &nbsp;$C = R$&nbsp; and &nbsp;$E_{\rm S} = R &middot; E_{\rm B}$&nbsp; the equation according to solution suggestion 1:
Bringt man den Faktor 1/2 auf die linke Seite der Gleichung und bildet die Potenz zur Basis 2, so erhält man den Lösungsvorschlag 2:
+
:$$R = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
$$2^{2R} =  1 +  2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
+
*Bringing the factor&nbsp; $1/2$&nbsp; to the left side of the equation and forming the power to the base&nbsp; $2$,&nbsp; we get the suggestion 2:
Löst man diese Gleichung nach <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> auf, so ergibt sich
+
:$$2^{2R} =  1 +  2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
+
*If we solve this equation for &nbsp;$E_{\rm B}/{N_0}$,&nbsp; we get
Das bedeutet: <u>Alle Lösungsvorschläge</u> sind richtig.
+
:$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
  
'''(2)'''&nbsp; Über einen Kanal mit der Kanalkapazität <i>C</i> ist eine fehlerfreie Übertragung möglich, solange die Coderate <i>R</i> &#8804; <i>C</i> ist. Die absolute Grenze ergibt sich im Grenzfall <i>C</i> = <i>R</i> = 0. Oder präziser ausgedrückt: für ein beliebig kleines positives <i>&epsilon;</i>: <i>C</i> = <i>R</i> = <i>&epsilon;</i> mit <i>&epsilon;</i> &#8594; 0.
 
  
Mit dem Ergebnis der Teilaufgabe (a) lautet die Bestimmungsgleichung:
+
 
$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
+
'''(2)'''&nbsp; Error-free transmission is possible over a channel with channel capacity&nbsp; $C$&nbsp; as long as the code rate is&nbsp;$R &#8804; C$.
Da hier der Quotient im Grenzübergang <i>R</i>&nbsp;&#8594;&nbsp;0 das Ergebnis &bdquo;0 geteilt durch 0&rdquo; liefert, ist hier die [https://de.wikipedia.org/wiki/Regel_von_de_l’Hospital|'''l'Hospitalsche Regel'''] anzuwenden: Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich <i>R</i> = 0 ein. Mit <i>x</i> = 2<i>R</i> lautet das Ergebnis:
+
*The absolute limit is obtained in the limiting case &nbsp;$C=R = 0$.
$${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} -  1}  { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} }  { 1} \hspace{0.05cm}\bigg |_{x=0}  
+
 
 +
*Or more precisely:&nbsp;  For an arbitrarily small positive&nbsp; $&epsilon;$,&nbsp; the following must hold: &nbsp; $C=R =&epsilon;$&nbsp; with &nbsp;$&epsilon; &#8594; 0$.
 +
 
 +
*Using the result of subtask&nbsp; '''(1)''',&nbsp; the governing equation is:
 +
:$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} -  1}  { 2 R}  \hspace{0.05cm}. $$
 +
*Since here the quotient in the boundary transition &nbsp;$ R &#8594; 0$&nbsp; yields the result&nbsp; "0 divided by 0",&nbsp; the&nbsp; [https://https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule l'Hospital's rule]&nbsp; is to be applied here: &nbsp; <br>Differentiate numerator and denominator, form the quotient and finally put &nbsp;$R = 0$&nbsp;.&nbsp;
 +
*With &nbsp;$x = 2R$&nbsp; the result is:
 +
:$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} -  1}  { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} }  { 1} \hspace{0.05cm}\bigg |_{x=0}  
 
= {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693}  
 
= {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; In logarithmierter Form erhält man:
+
 
$${\rm Min}\hspace{0.1cm}[10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})] =
+
 
 +
'''(3)'''&nbsp; In logarithmic form,&nbsp; we obtain::
 +
:$${\rm Min}\hspace{0.1cm}\big[10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big] =
 
10\cdot  {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}}  
 
10\cdot  {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}}  
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
'''(4)'''&nbsp; Der Abszissenwert lautet somit in nichtlogarithmierter Form: <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 1. Daraus folgt mit <i>C</i>&nbsp;=&nbsp;<i>R</i>:
+
 
$$\frac{2^{2C} -  1}  { 2 C} \stackrel{!}{=} 1  
+
 
 +
'''(4)'''&nbsp; Thus,&nbsp; the abscissa value in non-logarithmic form is: &nbsp; $E_{\rm B}/{N_0} = 1$.&nbsp; It follows with &nbsp;$C=R$:
 +
:$$\frac{2^{2C} -  1}  { 2 C} \stackrel{!}{=} 1  
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5}
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
'''(5)'''&nbsp; Für <i>R</i> = 1 ist <i>E</i><sub>B</sub> = <i>E</i><sub>S</sub>. Deshalb gilt:
+
 
$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm}
+
 
 +
'''(5)'''&nbsp; For &nbsp;$R = 1$&nbsp; &rArr; &nbsp;$E_{\rm B} = E_{\rm S}$.&nbsp; Therefore:
 +
:$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm}
 
C(E_{\rm S}/{N_0}) = 1
 
C(E_{\rm S}/{N_0}) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Aus der Tabelle auf der Angabenseite ist abzulesen:
+
*From the table on the information page we can read:
$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
 
\underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
Der dazugehörige dB&ndash;Wert ist 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB.
+
*The corresponding dB value is &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76 \ \rm dB$.
  
Zum gleichen Ergebnis kommt man mit <i>R</i> = 1 über die Gleichung
+
*The same result is obtained with &nbsp;$R = 1$&nbsp; via the equation
$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 \cdot R}  
+
:$$E_{\rm B}/{N_0} = \frac{2^{2R} -  1}  { 2 \cdot R}  
 
  = \frac{4 -  1}  { 2 } = 1.5 \hspace{0.05cm}.$$
 
  = \frac{4 -  1}  { 2 } = 1.5 \hspace{0.05cm}.$$
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie an einem Beispiel gezeigt werden soll.
+
 
:* Gesucht ist die Kanalkapazität <i>C</i> für 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 15 dB &nbsp;&#8658;&nbsp; <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 31.62. Dann gilt entsprechend dem Lösungsvorschlag 1 mit <i>x</i> = 2<i>C</i>:
+
 
$$31.62 = \frac{2^{x} -  1}  { x}  
+
 
 +
'''(6)'''&nbsp;<u>Proposed solution 2 2</u>, is correct, as will be shown by an example:
 +
 
 +
'''(a)'''&nbsp; The channel capacity &nbsp;$C$&nbsp; for &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 15 \ \rm dB$ &nbsp; &#8658; &nbsp; &nbsp;$\E_{\rm B}/{N_0} = 31.62$ is sought.
 +
[[File:EN_Inf_A_4_8_neu.png|right|frame|Capacity curves as a function of  &nbsp;$10 \cdot \lg (E_{\rm S}/{N_0})$&nbsp; and &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$]]
 +
*Then, according to the proposed solution 1 with &nbsp;$x = 2C$:
 +
:$$31.62 = \frac{2^{x} -  1}  { x}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
31.62 \cdot x = 2^{x} -  1
 
31.62 \cdot x = 2^{x} -  1
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
 
   
 
   
Die Lösung <i>x</i> = 7.986 &nbsp;&#8658;&nbsp; <i>C</i> = 3.993 (bit/use) kann nur grafisch oder iterativ gefunden werden.
+
*The solution $x = 7.986$ &nbsp; &#8658; &nbsp; $C = 3.993 \ \rm (bit/use)$ can only be found graphically or iteratively.
 +
 
  
:* Gesucht ist der notwendige Abszissenwert 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) für die Kapazität <i>C</i> = 4 bit/Symbol:
+
'''(b)'''&nbsp; The necessary abscissa value &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; for the capacity &nbsp;$C = 4 \ \rm bit/symbol$ is sought:
$$E_{\rm B}/{N_0} = \frac{2^{2C} -  1}  { 2 \cdot C}  
+
:$$E_{\rm B}/{N_0} = \frac{2^{2C} -  1}  { 2 \cdot C}  
  = \frac{2^8 -  1}  { 8 } = 31.875  
+
  = \frac{2^8 -  1}  { 8 } = 31.875$$
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm}
 
10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB}
 
10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
[[File:P_ID2940__Inf_T_4_3_S4.png|centre|]]
 
  
Die Grafik zeigt die AWGN&ndash;Kanalkapazität <i>C</i> in  &bdquo;bit/Kanalzugriff&rdquo; oder auch &bdquo;bit/Symbol&rdquo; abhängig von
 
  
:* 10 &middot; lg (<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) &nbsp;&#8658;&nbsp; rote Kurve und rote Zahlen; <br>diese
+
The graph shows the AWGN channel capacity as a function of&nbsp;
geben die Kanalkapazität <i>C</i> für das vorgegebene 10 &middot; lg (<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) an.
+
* $10 \cdot \lg (E_{\rm S}/{N_0})$ &nbsp;&#8658;&nbsp; red curve and numbers; <br>these indicate the channel capacity &nbsp;$C$&nbsp; for the given &nbsp;$10 \cdot \lg (E_{\rm S}/{N_0})$&nbsp;;
 +
* $10 \cdot \lg (E_{\rm B}/{N_0})$ &nbsp;&#8658;&nbsp; green curve and numbers; <br>these indicate the required &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; for the given channel capacity &nbsp;$C$&nbsp;.
 +
 
 +
 
 +
The intersection of the two curves is at &nbsp;$1.76\ \rm  dB$.
  
:* 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &nbsp;&#8658;&nbsp; grüne Kurve und  und grüne Zahlen; <br>diese geben das erforderliche 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) für die vorgegebene Kanalkapazität <i>C</i>  an.
 
  
Der Schnittpunkt der beiden Kurven liegt bei 1.76 dB.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN & wertdiskreter Eingang^]]
+
[[Category:Information Theory: Exercises|^4.3 AWGN and Value-Discrete Input^]]

Latest revision as of 10:58, 4 November 2021

$C$  as a function of  $E_{\rm S}/{N_0}$

There are two different equations for the channel capacity  $C$  of the AWGN channel as an upper bound for the code rate  $R$  in digital signal transmission:


$\text{Channel capacity as a function of energy per symbol}$:

$$C( E_{\rm S}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0}) .$$

Here, the following abbreviations are used:

  • $E_{\rm S}$  denotes the (average) energy per symbol of the digital signal,
  • $N_0$  indicates the AWGN noise power density.


$\text{Channel capacity as a function of energy per bit}$:

$$C( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
  • The relation  $E_{\rm S} = R \cdot E_{\rm B}$  has to be considered,  where  $R$  is the code rate of the best possible channel coding.
  • Error-free transmission  (with optimal code)  is possible for the given  $E_{\rm B}/N_0$  as long as  $R \le C$    ⇒   Shannon's channel coding theorem  holds.


Given by the table is the curve of channel capacity as a function of  $E_{\rm S}/N_0$.  The focus of this exercise is the numerical evaluation of the second equation.




Hints:



Questions

1

Which equations accurately describe the relationship between  $E_{\rm B}/{N_0}$  and the rate  $R$  for the AWGN channel?

  $R = 1/2 \cdot \log_2 (1 + 2 \cdot R \cdot E_{\rm B}/{N_0})$.
  $2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}$.
  $E_{\rm B}/{N_0} = (2^{2R} -1)/(2R) $.

2

Specify the smallest possible value for  $E_{\rm B}/{N_0}$  that can still be used to transmit over the AWGN channel without errors.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

3

Which result is obtained in  $\rm dB$?

$\text{Min} \ \big[10 \cdot \lg (E_{\rm B}/{N_0})\big] \ = \ $

$ \ \rm dB$

4

Give the AWGN channel capacity  $C$  for  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0$  dB.

$C \ = \ $

$ \ \rm bit/channel\:use$

5

Specify the required  $E_{\rm B}/{N_0}$  for error-free transmission with  $R = 1$ .  
Note: The solution can be found in the table on the information page.

$\text{Min} \ \big[E_{\rm B}/{N_0}\big] \ = \ $

6

How can a point of the  $C(E_{\rm B}/{N_0})$  curve be determined more easily?

Calculation of the channel capacity  $C$  for the given  $E_{\rm B}/{N_0}$.
Calculation of the required  $E_{\rm B}/{N_0}$  for the given  $C$.


Solution

(1)  All proposed solutions are correct:

  • Based on the equation
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot E_{\rm S}}/{N_0}) $$
we obtain with  $C = R$  and  $E_{\rm S} = R · E_{\rm B}$  the equation according to solution suggestion 1:
$$R = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + { 2 \cdot R \cdot E_{\rm B}}/{N_0})\hspace{0.05cm}. $$
  • Bringing the factor  $1/2$  to the left side of the equation and forming the power to the base  $2$,  we get the suggestion 2:
$$2^{2R} = 1 + 2 \cdot R \cdot E_{\rm B}/{N_0}\hspace{0.05cm}. $$
  • If we solve this equation for  $E_{\rm B}/{N_0}$,  we get
$$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$


(2)  Error-free transmission is possible over a channel with channel capacity  $C$  as long as the code rate is $R ≤ C$.

  • The absolute limit is obtained in the limiting case  $C=R = 0$.
  • Or more precisely:  For an arbitrarily small positive  $ε$,  the following must hold:   $C=R =ε$  with  $ε → 0$.
  • Using the result of subtask  (1),  the governing equation is:
$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$
  • Since here the quotient in the boundary transition  $ R → 0$  yields the result  "0 divided by 0",  the  l'Hospital's rule  is to be applied here:  
    Differentiate numerator and denominator, form the quotient and finally put  $R = 0$ . 
  • With  $x = 2R$  the result is:
$${\rm Min}\hspace{0.1cm}\big[E_{\rm B}/{N_0}\big] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} - 1} { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} } { 1} \hspace{0.05cm}\bigg |_{x=0} = {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693} \hspace{0.05cm}.$$


(3)  In logarithmic form,  we obtain::

$${\rm Min}\hspace{0.1cm}\big[10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big] = 10\cdot {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}} \hspace{0.05cm}. $$


(4)  Thus,  the abscissa value in non-logarithmic form is:   $E_{\rm B}/{N_0} = 1$.  It follows with  $C=R$:

$$\frac{2^{2C} - 1} { 2 C} \stackrel{!}{=} 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5} \hspace{0.05cm}. $$


(5)  For  $R = 1$  ⇒  $E_{\rm B} = E_{\rm S}$.  Therefore:

$$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm} C(E_{\rm S}/{N_0}) = 1 \hspace{0.05cm}.$$
  • From the table on the information page we can read:
$$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$
  • The corresponding dB value is  $10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76 \ \rm dB$.
  • The same result is obtained with  $R = 1$  via the equation
$$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{4 - 1} { 2 } = 1.5 \hspace{0.05cm}.$$


(6) Proposed solution 2 2, is correct, as will be shown by an example:

(a)  The channel capacity  $C$  for  $10 \cdot \lg (E_{\rm B}/{N_0}) = 15 \ \rm dB$   ⇒    $\E_{\rm B}/{N_0} = 31.62$ is sought.

Capacity curves as a function of  $10 \cdot \lg (E_{\rm S}/{N_0})$  and  $10 \cdot \lg (E_{\rm B}/{N_0})$
  • Then, according to the proposed solution 1 with  $x = 2C$:
$$31.62 = \frac{2^{x} - 1} { x} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 31.62 \cdot x = 2^{x} - 1 \hspace{0.05cm}. $$
  • The solution $x = 7.986$   ⇒   $C = 3.993 \ \rm (bit/use)$ can only be found graphically or iteratively.


(b)  The necessary abscissa value  $10 \cdot \lg (E_{\rm B}/{N_0})$  for the capacity  $C = 4 \ \rm bit/symbol$ is sought:

$$E_{\rm B}/{N_0} = \frac{2^{2C} - 1} { 2 \cdot C} = \frac{2^8 - 1} { 8 } = 31.875$$
$$\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB} \hspace{0.05cm}.$$


The graph shows the AWGN channel capacity as a function of 

  • $10 \cdot \lg (E_{\rm S}/{N_0})$  ⇒  red curve and numbers;
    these indicate the channel capacity  $C$  for the given  $10 \cdot \lg (E_{\rm S}/{N_0})$ ;
  • $10 \cdot \lg (E_{\rm B}/{N_0})$  ⇒  green curve and numbers;
    these indicate the required  $10 \cdot \lg (E_{\rm B}/{N_0})$  for the given channel capacity  $C$ .


The intersection of the two curves is at  $1.76\ \rm dB$.