Difference between revisions of "Aufgaben:Exercise 4.8Z: What does the AWGN Channel Capacity Curve say?"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Inf_Z_4_8.png|right|frame|channel capacity as a function of  $10 \cdot \lg (E_{\rm B}/{N_0})$ ]]
+
[[File:EN_Inf_Z_4_8.png|right|frame|Channel capacity as a function of  $10 \cdot \lg (E_{\rm B}/{N_0})$ ]]
We consider the channel capacity of the AWGN channel as in  [[Aufgaben:Aufgabe_4.8:_Numerische_Auswertung_der_AWGN-Kanalkapazität|Exercise 4.8]] :
+
We consider the channel capacity of the AWGN channel as in  [[Aufgaben:Aufgabe_4.8:_Numerische_Auswertung_der_AWGN-Kanalkapazität|Exercise 4.8]]:
:$$C_{\rm Gauß}( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
+
:$$C_{\rm Gaussian}( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
* The curve is shown on the right with logarithmic abscissa between  $-2 \ \rm dB$ and $+6 \ \rm dB$  dargestellt.   
+
* The curve is shown on the right with logarithmic abscissa between  $-2 \ \rm dB$  and  $+6 \ \rm dB$  dargestellt.   
* The addition of "Gaussian" indicates that a Gaussian distribution was assumed for this curve at the AWGN input.
+
* The addition of  "Gaussian"  indicates that a Gaussian distribution was assumed for this curve at the AWGN input.
  
Three system variants are indicated by dots in the above graph:
+
 
 +
Three system variants are indicated by dots in the graph:
 
* System $X$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  and  $R = 1$,
 
* System $X$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  and  $R = 1$,
 
* System $Y$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 2$,
 
* System $Y$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 2$,
Line 16: Line 17:
  
 
In the questions for this exercise, we still use the following terms:
 
In the questions for this exercise, we still use the following terms:
* Digital system:   symbol range  $M_X = |X|$  beliebig,
+
* Digital system:   Symbol set size  $M_X = |X|$  beliebig,
* Binary system:   symbol range  $M_X = 2$,
+
* Binary system:   Symbol set size  $M_X = 2$,
* Quaternary system:   symbol range  $M_X = 4$.   
+
* Quaternary system:   Symbol set size  $M_X = 4$.   
 
 
 
 
 
 
  
  
Line 29: Line 27:
 
Hints:
 
Hints:
 
*The exercise belongs to the chapter  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
 
*The exercise belongs to the chapter  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
*Reference is made in particular to the page  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax128-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax129-QINU.60.22.27.7F|The channel capacity $C$ as a function of $E_{\rm B}/{N_0}$]].  
+
*Reference is made in particular to the page  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax128-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax129-QINU.60.22.27.7F|The channel capacity  $C$  as a function of $E_{\rm B}/{N_0}$]].  
*Since the results are to be given in "bit", "log" &nbsp; &#8658; &nbsp; "log<sub>2</sub>" is used in the equations.
+
*Since the results are to be given in&nbsp; "bit" &nbsp; &rArr; &nbsp; "log"&nbsp; &nbsp; &#8658; &nbsp; "log<sub>2</sub>"&nbsp; is used in the equations.
  
  
Line 47: Line 45:
 
|type="[]"}
 
|type="[]"}
 
- For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; a digital system with rate &nbsp;$R = 2$&nbsp;and error probability zero can be imagined.
 
- For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; a digital system with rate &nbsp;$R = 2$&nbsp;and error probability zero can be imagined.
+ For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; &nbsp;$R = 0.5$&nbsp; would be sufficient.
+
+ For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$ &nbsp; &rArr; &nbsp; $R = 0.5$&nbsp; would be sufficient.
- For rate &nbsp;$R = 2$&nbsp; würde &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 5 \ \rm dB$&nbsp; would be sufficient.
+
- For rate &nbsp;$R = 2$ &nbsp; &rArr; &nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 5 \ \rm dB$&nbsp; would be sufficient.
  
 
{What statement does point &nbsp;$Z$&nbsp; provide for binary transmission?
 
{What statement does point &nbsp;$Z$&nbsp; provide for binary transmission?
 
|type="[]"}
 
|type="[]"}
 
+ A binary system does not meet the requirements in any case.
 
+ A binary system does not meet the requirements in any case.
- The curve &nbsp;$C_\text{Gauß}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
+
- The curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
  
 
{Which statement does the point &nbsp;$Z$&nbsp; provide for the quaternary transmission?
 
{Which statement does the point &nbsp;$Z$&nbsp; provide for the quaternary transmission?
 
|type="[]"}
 
|type="[]"}
 
- A quaternary system does not meet the requirements in any case.
 
- A quaternary system does not meet the requirements in any case.
+ The curve &nbsp;$C_\text{Gauß}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
+
+ The curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
  
  
Line 68: Line 66:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Proposed solutions 1 and 3</u> are correct:
+
'''(1)'''&nbsp; <u>Proposed solutions 1 and 3</u>&nbsp; are correct:
*Since the point &nbsp;$X$&nbsp; lies to the right of the channel capacity curve &nbsp;$C_\text{Gauß}(E_{\rm B}/{N_0})$&nbsp;, there is (at least) one message system of rate &nbsp;$R = 1$that provides quasi&ndash;error&ndash;free transmission with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$&nbsp;.  
+
*Since the point &nbsp;$X$&nbsp; lies to the right of the channel capacity curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$,&nbsp; there is (at least) one transmission system of rate &nbsp;$R = 1$&nbsp; that provides&nbsp; "quasi&ndash;error&ndash;free"&nbsp; transmission with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$.  
*Despite the code rate &nbsp;$R = 1$&nbsp;, this system includes a channel coding with an infinitely long code, but unfortunately this code is unknown.
+
*Despite the code rate &nbsp;$R = 1$,&nbsp; this system includes a channel coding with an infinitely long code,&nbsp; but unfortunately this code is unknown.
*However, a binary system of rate &nbsp;$R = 1$&nbsp; does not allow channel coding.
+
*However,&nbsp; a binary system of rate &nbsp;$R = 1$&nbsp; does not allow channel coding.
  
  
  
  
'''(2)'''&nbsp; Only the <u>proposed solution 2</u> is correct. Here the following statements are valid:
+
'''(2)'''&nbsp; Only the&nbsp; <u>proposed solution 2</u>&nbsp; is correct.&nbsp; Here the following statements are valid:
 
* The required &nbsp;$E_{\rm B}/{N_0}$&nbsp; for the rate &nbsp;$R = 2$&nbsp; results in
 
* The required &nbsp;$E_{\rm B}/{N_0}$&nbsp; for the rate &nbsp;$R = 2$&nbsp; results in
 
:$$(E_{\rm B}/{N_0})_{\rm min} = \frac{2^{2R} -  1}  { 2 \cdot R}  
 
:$$(E_{\rm B}/{N_0})_{\rm min} = \frac{2^{2R} -  1}  { 2 \cdot R}  
Line 92: Line 90:
  
  
'''(3)'''&nbsp; With a binary system, the rate &nbsp;$R = 1.5$&nbsp; can never be realized &nbsp;&#8658; &nbsp; <u>proposed solution 1</u>.
+
'''(3)'''&nbsp; With a binary system,&nbsp; the rate &nbsp;$R = 1.5$&nbsp; can never be realized &nbsp; &#8658; &nbsp; <u>proposed solution 1</u>.
  
  
  
  
'''(4)'''&nbsp; Correct is the <u>proposed solution 2</u>:
+
'''(4)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
*The point &nbsp;$Z$&nbsp; ies to the right of the boundary curve and for the code rate of a quaternary system &nbsp;$R \le 2$ holds.&nbsp;
+
*The point &nbsp;$Z$&nbsp; lies to the right of the boundary curve and for the code rate of a quaternary system holds&nbsp; $R \le 2$.&nbsp;
*So the rate &nbsp;$R =1.5$&nbsp; would be quite realizable with&nbsp; $M_X = 4$&nbsp;.  
+
*So the code rate &nbsp;$R =1.5$&nbsp; would be quite realizable with&nbsp; $M_X = 4$.  
*The proposed solution 1 is wrong. On the other hand, the second solution suggestion is correct:
+
*The proposed solution 1 is wrong.&nbsp; On the other hand,holds the second solution suggestion is correct:
  
* The given curve &nbsp;$C_\text{Gauß}(E_{\rm B}/{N_0})$&nbsp; always assumes a Gaussian distributed input.
+
* The given curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; always assumes a Gaussian distributed input.
* For a binary system, a different boundary curve results, namely &nbsp;$C_\text{BPSK} &#8804; 1 \ \rm  bit/channel use$. $C_\text{Gauß}$&nbsp; and &nbsp;$C_\text{BPSK}$&nbsp; are significantly different.
+
* For a binary system,&nbsp; a different boundary curve results,&nbsp; namely &nbsp;$C_\text{BPSK} &#8804; 1 \ \rm  bit/channel \ use$.&nbsp; $C_\text{Gaussian}$&nbsp; and &nbsp;$C_\text{BPSK}$&nbsp; are significantly different.
* For the quaternary system &nbsp;$(M_X = 4)$&nbsp; one would have to calculate and analyze the curve &nbsp;$C_{M=4}$&nbsp;.&nbsp; Again, &nbsp;$C_{M=4} &#8804; C_\text{Gauß}$&nbsp;.  
+
* For the quaternary system &nbsp;$(M_X = 4)$&nbsp; one would have to calculate and analyze the curve &nbsp;$C_{M=4}$&nbsp;.&nbsp; Again, &nbsp;$C_{M=4} &#8804; C_\text{Gaussian}$&nbsp;.  
*For small &nbsp;$E_{\rm B}/{N_0}$&nbsp;, &nbsp;$C_{M=4} \approx C_\text{Gauß}$, holds, after which the curve diverges significantly and ends in a horizontal at &nbsp;$C_{M=4}  = 2 \ \rm bit/channel use$.
+
*For small &nbsp;$E_{\rm B}/{N_0}$:&nbsp; $C_{M=4} \approx C_\text{Gaussian}$&nbsp; holds,&nbsp; after which the curve diverges significantly and ends in a horizontal at &nbsp;$C_{M=4}  = 2 \ \rm bit/channel \ use$.
  
  
 
The point &nbsp;$Z$&nbsp;  &nbsp; &#8658; &nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB, \ \ R = 1.5$&nbsp; lies below &nbsp;$C_{M=4}$.  
 
The point &nbsp;$Z$&nbsp;  &nbsp; &#8658; &nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB, \ \ R = 1.5$&nbsp; lies below &nbsp;$C_{M=4}$.  
*Such a quaternary system would thus be feasible, as will be shown in&nbsp; [[Aufgaben:Aufgabe_4.Zehn:_QPSK–Kanalkapazität|Exercise 4.10]]&nbsp;.
+
*Such a quaternary system would thus be feasible,&nbsp; as will be shown in&nbsp; [[Aufgaben:Aufgabe_4.Zehn:_QPSK–Kanalkapazität|Exercise 4.10]]&nbsp;.
*But only from knowledge of &nbsp;$C_\text{Gauß}$&nbsp; the question cannot be answered (<u>proposed solution 2</u>).
+
*But only from knowledge of &nbsp;$C_\text{Gaussian}$&nbsp; the question cannot be answered&nbsp; (<u>proposed solution 2</u>).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 13:15, 4 November 2021

Channel capacity as a function of  $10 \cdot \lg (E_{\rm B}/{N_0})$

We consider the channel capacity of the AWGN channel as in  Exercise 4.8:

$$C_{\rm Gaussian}( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
  • The curve is shown on the right with logarithmic abscissa between  $-2 \ \rm dB$  and  $+6 \ \rm dB$  dargestellt.
  • The addition of  "Gaussian"  indicates that a Gaussian distribution was assumed for this curve at the AWGN input.


Three system variants are indicated by dots in the graph:

  • System $X$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  and  $R = 1$,
  • System $Y$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 2$,
  • System $Z$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB$  and  $R = 1.5$.


In the questions for this exercise, we still use the following terms:

  • Digital system:   Symbol set size  $M_X = |X|$  beliebig,
  • Binary system:   Symbol set size  $M_X = 2$,
  • Quaternary system:   Symbol set size  $M_X = 4$.



Hints:


Questions

1

What statement does the point  $X$  provide for digital signal transmission?

For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  a digital system with rate  $R = 1$  and error probability zero can be imagined.
Such a system does not require channel coding.
Such a system uses an infinitely long code.
A binary system can also meet the requirements.

2

What statement does the point  $Y$  provide for digital signal transmission?

For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  a digital system with rate  $R = 2$ and error probability zero can be imagined.
For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$   ⇒   $R = 0.5$  would be sufficient.
For rate  $R = 2$   ⇒   $10 \cdot \lg (E_{\rm B}/{N_0}) = 5 \ \rm dB$  would be sufficient.

3

What statement does point  $Z$  provide for binary transmission?

A binary system does not meet the requirements in any case.
The curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  is not sufficient for this evaluation.

4

Which statement does the point  $Z$  provide for the quaternary transmission?

A quaternary system does not meet the requirements in any case.
The curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  is not sufficient for this evaluation.


Solution

(1)  Proposed solutions 1 and 3  are correct:

  • Since the point  $X$  lies to the right of the channel capacity curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$,  there is (at least) one transmission system of rate  $R = 1$  that provides  "quasi–error–free"  transmission with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$.
  • Despite the code rate  $R = 1$,  this system includes a channel coding with an infinitely long code,  but unfortunately this code is unknown.
  • However,  a binary system of rate  $R = 1$  does not allow channel coding.



(2)  Only the  proposed solution 2  is correct.  Here the following statements are valid:

  • The required  $E_{\rm B}/{N_0}$  for the rate  $R = 2$  results in
$$(E_{\rm B}/{N_0})_{\rm min} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{2^4 - 1} { 4 } = 3.75 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})_{\rm min} = 15.74\,{\rm dB} \hspace{0.05cm}. $$
  • The maximum code rate  $R_{\rm max}$  for  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$    ⇒   $E_{\rm B}/{N_0} = 1$  is calculated as follows:
$$C = R = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2^{2R} - 1 \stackrel{!}{=} 2 R \hspace{0.3cm}\Rightarrow \hspace{0.3cm} R_{\rm max} = 0.5 \hspace{0.05cm}. $$
  • Both calculations show that the point  $Y$ with characteristics  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 1$  does not satisfy the channel coding theorem.



(3)  With a binary system,  the rate  $R = 1.5$  can never be realized   ⇒   proposed solution 1.



(4)  Correct is the  proposed solution 2:

  • The point  $Z$  lies to the right of the boundary curve and for the code rate of a quaternary system holds  $R \le 2$. 
  • So the code rate  $R =1.5$  would be quite realizable with  $M_X = 4$.
  • The proposed solution 1 is wrong.  On the other hand,holds the second solution suggestion is correct:
  • The given curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  always assumes a Gaussian distributed input.
  • For a binary system,  a different boundary curve results,  namely  $C_\text{BPSK} ≤ 1 \ \rm bit/channel \ use$.  $C_\text{Gaussian}$  and  $C_\text{BPSK}$  are significantly different.
  • For the quaternary system  $(M_X = 4)$  one would have to calculate and analyze the curve  $C_{M=4}$ .  Again,  $C_{M=4} ≤ C_\text{Gaussian}$ .
  • For small  $E_{\rm B}/{N_0}$:  $C_{M=4} \approx C_\text{Gaussian}$  holds,  after which the curve diverges significantly and ends in a horizontal at  $C_{M=4} = 2 \ \rm bit/channel \ use$.


The point  $Z$    ⇒   $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB, \ \ R = 1.5$  lies below  $C_{M=4}$.

  • Such a quaternary system would thus be feasible,  as will be shown in  Exercise 4.10 .
  • But only from knowledge of  $C_\text{Gaussian}$  the question cannot be answered  (proposed solution 2).