Difference between revisions of "Aufgaben:Exercise 4.8Z: What does the AWGN Channel Capacity Curve say?"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang }} right| Wir betrachten wie i…“)
 
 
(31 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input
 
}}
 
}}
  
[[File:P_ID2943__Inf_Z_4_8.png|right|]]
+
[[File:EN_Inf_Z_4_8.png|right|frame|Channel capacity as a function of  $10 \cdot \lg (E_{\rm B}/{N_0})$ ]]
Wir betrachten wie in [[Aufgaben:4.8_Kurvenverlauf_C(EB/N0)|'''Aufgabe A4.8''']] die Kanalkapazität des AWGN–Kanals:
+
We consider the channel capacity of the AWGN channel as in  [[Aufgaben:Aufgabe_4.8:_Numerische_Auswertung_der_AWGN-Kanalkapazität|Exercise 4.8]]:
 +
:$$C_{\rm Gaussian}( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
 +
* The curve is shown on the right with logarithmic abscissa between  $-2 \ \rm dB$  and  $+6 \ \rm dB$  dargestellt. 
 +
* The addition of  "Gaussian"  indicates that a Gaussian distribution was assumed for this curve at the AWGN input.
  
$$C_{\rm Gauß}( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
 
:* Die Kurve ist rechts bei logarithmischer Achse zwischen –2 dB und +6 dB dargestellt. 
 
:* Der Zusatz „Gauß” weist darauf hin, dass für diese Kurve am AWGN–Eingang eine Gaußverteilung vorausgesetzt wurde.
 
  
Eingezeichnet sind in obiger Grafik drei Systemvarianten:
+
Three system variants are indicated by dots in the graph:
:* System '''''X''''' : &nbsp;&nbsp; 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 4 dB, <i>R</i> = 1,
+
* System $X$: &nbsp;&nbsp; with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$&nbsp; and&nbsp; $R = 1$,
:* System '''''Y''''' :&nbsp;&nbsp; 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB, <i>R</i> = 2,
+
* System $Y$: &nbsp;&nbsp; with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; and&nbsp; $R = 2$,
:* System '''''Z''''' :&nbsp;&nbsp; 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 6 dB, <i>R</i> = 1.5.    
+
* System $Z$: &nbsp;&nbsp; with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB$&nbsp; and&nbsp; $R = 1.5$.
  
'''Hinweis'''
 
  
:* Die Aufgabe bezieht sich auf das [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''Kapitel 4.3.''']]
+
In the questions for this exercise, we still use the following terms:
 +
* Digital system:&nbsp;&nbsp; Symbol set size&nbsp; $M_X = |X|$&nbsp; beliebig,
 +
* Binary system:&nbsp;&nbsp; Symbol set size&nbsp; $M_X = 2$,
 +
* Quaternary system:&nbsp;&nbsp; Symbol set size&nbsp; $M_X = 4$.  
  
In den Fragen zu dieser Aufgabe verwenden wir noch folgende Begriffe:
 
:* Digitalsystem:&nbsp;&nbsp; Symbolumfang <i>M<sub>X</sub></i> = |<i>X</i>| beliebig,
 
:* Binärsystem:&nbsp;&nbsp; Symbolumfang <i>M<sub>X</sub></i> = 2,
 
:* Quaternärsystem:&nbsp;&nbsp; Symbolumfang <i>M<sub>X</sub></i> = 4.
 
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax128-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax129-QINU.60.22.27.7F|The channel capacity&nbsp; $C$&nbsp; as a function of $E_{\rm B}/{N_0}$]].
 +
*Since the results are to be given in&nbsp; "bit" &nbsp; &rArr; &nbsp; "log"&nbsp; &nbsp; &#8658; &nbsp; "log<sub>2</sub>"&nbsp; is used in the equations.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What statement does the point &nbsp;$X$&nbsp; provide for digital signal transmission?
 +
|type="[]"}
 +
+ For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$&nbsp; a digital system with rate &nbsp;$R = 1$&nbsp; and error probability zero can be imagined.
 +
- Such a system does not require channel coding.
 +
+ Such a system uses an infinitely long code.
 +
- A binary system can also meet the requirements.
 +
 
 +
 
 +
{What statement does the point &nbsp;$Y$&nbsp; provide for digital signal transmission?
 +
|type="[]"}
 +
- For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; a digital system with rate &nbsp;$R = 2$&nbsp;and error probability zero can be imagined.
 +
+ For &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$ &nbsp; &rArr; &nbsp; $R = 0.5$&nbsp; would be sufficient.
 +
- For rate &nbsp;$R = 2$ &nbsp; &rArr; &nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 5 \ \rm dB$&nbsp; would be sufficient.
 +
 
 +
{What statement does point &nbsp;$Z$&nbsp; provide for binary transmission?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ A binary system does not meet the requirements in any case.
+ Richtig
+
- The curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
 +
 
 +
{Which statement does the point &nbsp;$Z$&nbsp; provide for the quaternary transmission?
 +
|type="[]"}
 +
- A quaternary system does not meet the requirements in any case.
 +
+ The curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; is not sufficient for this evaluation.
  
  
{Input-Box Frage
 
|type="{}"}
 
$\alpha$ = { 0.3 }
 
  
  
Line 41: Line 64:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; <u>Proposed solutions 1 and 3</u>&nbsp; are correct:
'''2.'''
+
*Since the point &nbsp;$X$&nbsp; lies to the right of the channel capacity curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$,&nbsp; there is (at least) one transmission system of rate &nbsp;$R = 1$&nbsp; that provides&nbsp; "quasi&ndash;error&ndash;free"&nbsp; transmission with&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$.
'''3.'''
+
*Despite the code rate &nbsp;$R = 1$,&nbsp; this system includes a channel coding with an infinitely long code,&nbsp; but unfortunately this code is unknown.
'''4.'''
+
*However,&nbsp; a binary system of rate &nbsp;$R = 1$&nbsp; does not allow channel coding.
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
 
 +
'''(2)'''&nbsp; Only the&nbsp; <u>proposed solution 2</u>&nbsp; is correct.&nbsp; Here the following statements are valid:
 +
* The required &nbsp;$E_{\rm B}/{N_0}$&nbsp; for the rate &nbsp;$R = 2$&nbsp; results in
 +
:$$(E_{\rm B}/{N_0})_{\rm min} = \frac{2^{2R} -  1}  { 2 \cdot R}
 +
= \frac{2^4 -  1}  { 4 } = 3.75
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
10\cdot  {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})_{\rm min} = 15.74\,{\rm dB}
 +
\hspace{0.05cm}. $$
 +
* The maximum code rate &nbsp;$R_{\rm max}$&nbsp; for &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp;  &nbsp; &#8658; &nbsp; $E_{\rm B}/{N_0} = 1$&nbsp; is calculated as follows:
 +
:$$C = R = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0})
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2^{2R} -  1  \stackrel{!}{=} 2  R
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} R_{\rm max} = 0.5 \hspace{0.05cm}.  $$
 +
*Both calculations show that the point  &nbsp;$Y$&nbsp;with characteristics &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$&nbsp; and &nbsp;$R = 1$&nbsp; does not satisfy the channel coding theorem.
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; With a binary system,&nbsp; the rate &nbsp;$R = 1.5$&nbsp; can never be realized &nbsp; &#8658; &nbsp; <u>proposed solution 1</u>.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
*The point &nbsp;$Z$&nbsp; lies to the right of the boundary curve and for the code rate of a quaternary system holds&nbsp; $R \le 2$.&nbsp;
 +
*So the code rate &nbsp;$R =1.5$&nbsp; would be quite realizable with&nbsp; $M_X = 4$.
 +
*The proposed solution 1 is wrong.&nbsp; On the other hand,holds the second solution suggestion is correct:
 +
 
 +
* The given curve &nbsp;$C_\text{Gaussian}(E_{\rm B}/{N_0})$&nbsp; always assumes a Gaussian distributed input.
 +
* For a binary system,&nbsp; a different boundary curve results,&nbsp; namely &nbsp;$C_\text{BPSK} &#8804; 1 \ \rm  bit/channel \ use$.&nbsp; $C_\text{Gaussian}$&nbsp; and &nbsp;$C_\text{BPSK}$&nbsp; are significantly different.
 +
* For the quaternary system &nbsp;$(M_X = 4)$&nbsp; one would have to calculate and analyze the curve &nbsp;$C_{M=4}$&nbsp;.&nbsp; Again, &nbsp;$C_{M=4} &#8804; C_\text{Gaussian}$&nbsp;.  
 +
*For small &nbsp;$E_{\rm B}/{N_0}$:&nbsp; $C_{M=4} \approx C_\text{Gaussian}$&nbsp; holds,&nbsp; after which the curve diverges significantly and ends in a horizontal at &nbsp;$C_{M=4}  = 2 \ \rm bit/channel \ use$.
 +
 
 +
 
 +
The point &nbsp;$Z$&nbsp;  &nbsp; &#8658; &nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB, \ \ R = 1.5$&nbsp; lies below &nbsp;$C_{M=4}$.
 +
*Such a quaternary system would thus be feasible,&nbsp; as will be shown in&nbsp; [[Aufgaben:Aufgabe_4.Zehn:_QPSK–Kanalkapazität|Exercise 4.10]]&nbsp;.
 +
*But only from knowledge of &nbsp;$C_\text{Gaussian}$&nbsp; the question cannot be answered&nbsp; (<u>proposed solution 2</u>).
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN–Kanalkapazität bei wertdiskretem Eingang^]]
+
[[Category:Information Theory: Exercises|^4.3 AWGN and Value-Discrete Input^]]

Latest revision as of 13:15, 4 November 2021

Channel capacity as a function of  $10 \cdot \lg (E_{\rm B}/{N_0})$

We consider the channel capacity of the AWGN channel as in  Exercise 4.8:

$$C_{\rm Gaussian}( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) . $$
  • The curve is shown on the right with logarithmic abscissa between  $-2 \ \rm dB$  and  $+6 \ \rm dB$  dargestellt.
  • The addition of  "Gaussian"  indicates that a Gaussian distribution was assumed for this curve at the AWGN input.


Three system variants are indicated by dots in the graph:

  • System $X$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  and  $R = 1$,
  • System $Y$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 2$,
  • System $Z$:    with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB$  and  $R = 1.5$.


In the questions for this exercise, we still use the following terms:

  • Digital system:   Symbol set size  $M_X = |X|$  beliebig,
  • Binary system:   Symbol set size  $M_X = 2$,
  • Quaternary system:   Symbol set size  $M_X = 4$.



Hints:


Questions

1

What statement does the point  $X$  provide for digital signal transmission?

For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$  a digital system with rate  $R = 1$  and error probability zero can be imagined.
Such a system does not require channel coding.
Such a system uses an infinitely long code.
A binary system can also meet the requirements.

2

What statement does the point  $Y$  provide for digital signal transmission?

For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  a digital system with rate  $R = 2$ and error probability zero can be imagined.
For  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$   ⇒   $R = 0.5$  would be sufficient.
For rate  $R = 2$   ⇒   $10 \cdot \lg (E_{\rm B}/{N_0}) = 5 \ \rm dB$  would be sufficient.

3

What statement does point  $Z$  provide for binary transmission?

A binary system does not meet the requirements in any case.
The curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  is not sufficient for this evaluation.

4

Which statement does the point  $Z$  provide for the quaternary transmission?

A quaternary system does not meet the requirements in any case.
The curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  is not sufficient for this evaluation.


Solution

(1)  Proposed solutions 1 and 3  are correct:

  • Since the point  $X$  lies to the right of the channel capacity curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$,  there is (at least) one transmission system of rate  $R = 1$  that provides  "quasi–error–free"  transmission with  $10 \cdot \lg (E_{\rm B}/{N_0}) = 4 \ \rm dB$.
  • Despite the code rate  $R = 1$,  this system includes a channel coding with an infinitely long code,  but unfortunately this code is unknown.
  • However,  a binary system of rate  $R = 1$  does not allow channel coding.



(2)  Only the  proposed solution 2  is correct.  Here the following statements are valid:

  • The required  $E_{\rm B}/{N_0}$  for the rate  $R = 2$  results in
$$(E_{\rm B}/{N_0})_{\rm min} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{2^4 - 1} { 4 } = 3.75 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})_{\rm min} = 15.74\,{\rm dB} \hspace{0.05cm}. $$
  • The maximum code rate  $R_{\rm max}$  for  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$    ⇒   $E_{\rm B}/{N_0} = 1$  is calculated as follows:
$$C = R = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2^{2R} - 1 \stackrel{!}{=} 2 R \hspace{0.3cm}\Rightarrow \hspace{0.3cm} R_{\rm max} = 0.5 \hspace{0.05cm}. $$
  • Both calculations show that the point  $Y$ with characteristics  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0 \ \rm dB$  and  $R = 1$  does not satisfy the channel coding theorem.



(3)  With a binary system,  the rate  $R = 1.5$  can never be realized   ⇒   proposed solution 1.



(4)  Correct is the  proposed solution 2:

  • The point  $Z$  lies to the right of the boundary curve and for the code rate of a quaternary system holds  $R \le 2$. 
  • So the code rate  $R =1.5$  would be quite realizable with  $M_X = 4$.
  • The proposed solution 1 is wrong.  On the other hand,holds the second solution suggestion is correct:
  • The given curve  $C_\text{Gaussian}(E_{\rm B}/{N_0})$  always assumes a Gaussian distributed input.
  • For a binary system,  a different boundary curve results,  namely  $C_\text{BPSK} ≤ 1 \ \rm bit/channel \ use$.  $C_\text{Gaussian}$  and  $C_\text{BPSK}$  are significantly different.
  • For the quaternary system  $(M_X = 4)$  one would have to calculate and analyze the curve  $C_{M=4}$ .  Again,  $C_{M=4} ≤ C_\text{Gaussian}$ .
  • For small  $E_{\rm B}/{N_0}$:  $C_{M=4} \approx C_\text{Gaussian}$  holds,  after which the curve diverges significantly and ends in a horizontal at  $C_{M=4} = 2 \ \rm bit/channel \ use$.


The point  $Z$    ⇒   $10 \cdot \lg (E_{\rm B}/{N_0}) = 6 \ \rm dB, \ \ R = 1.5$  lies below  $C_{M=4}$.

  • Such a quaternary system would thus be feasible,  as will be shown in  Exercise 4.10 .
  • But only from knowledge of  $C_\text{Gaussian}$  the question cannot be answered  (proposed solution 2).