Difference between revisions of "Aufgaben:Exercise 4.9Z: Is Channel Capacity C ≡ 1 possible with BPSK?"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang }} right| Wir gehen hier von…“)
 
 
(29 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input
 
}}
 
}}
  
[[File:P_ID2947__Inf_Z_4_9.png|right|]]
+
[[File:EN_Inf_Z_4_9.png|right|frame|Two different PDFs  $f_N(n)$  for the impairments  (e.g. noise)]]
  
Wir gehen hier von einem binären bipolaren Quellensignal &#8658;&nbsp;<i>X</i> = (+1, &ndash;1)</nobr> aus. Die Wahrscheinlichkeitsdichtefunktion (WDF) der Quelle lautet somit:
+
We assume here a binary bipolar source signal &nbsp;  &#8658; &nbsp; $ x \in X = \{+1, -1\}$.
$$f_X(x) = {1}/{2} \cdot \delta (x-1) + {1}/{2} \cdot \delta (x+1)\hspace{0.05cm}.  $$
+
 
Die Transinformation zwischen der Quelle <i>X</i> und der Sinke <i>Y</i> kann gemäß der folgenden Gleichung berechnet werden:
+
Thus,&nbsp; the probability density function&nbsp; $\rm (PDF)$&nbsp; of the source is:
$$I(X;Y) = h(Y) - h(N)\hspace{0.05cm},  $$
+
:$$f_X(x) = {1}/{2} \cdot \delta (x-1) + {1}/{2} \cdot \delta (x+1)\hspace{0.05cm}.  $$
wobei gilt:
+
The mutual information between the source&nbsp; $X$&nbsp; and the sink&nbsp; $Y$&nbsp; can be calculated according to the equation
:* '''h(Y)''' bezeichnet die '''differentille Sinkenentropie''' :
+
:$$I(X;Y) = h(Y) - h(N)$$
$$h(Y) =  
+
where holds:
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_Y)} \hspace{-0.35cm}  f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_Y(y) ] \hspace{0.1cm}{\rm d}y  
+
* $h(Y)$&nbsp; denotes the&nbsp; '''differential sink entropy'''
 +
:$$h(Y) =  
 +
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_Y)} \hspace{-0.35cm}  f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_Y(y) \big] \hspace{0.1cm}{\rm d}y  
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
$${\rm mit}\hspace{0.5cm}
+
:$${\rm with}\hspace{0.5cm}
f_Y(y) = {1}/{2} \cdot \left [ f_{Y|{X}}(y|{X}=-1) + f_{Y|{X}}(y|{X}=+1) \right  ]\hspace{0.05cm}.$$
+
f_Y(y) = {1}/{2} \cdot \big[ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=+1) \big ]\hspace{0.05cm}.$$
:* '''h(N)''' gibt die '''differentielle Störentropie''' an, berechenbar aus der WDF ''$$f_N(n)$$''
+
* $h(N)$&nbsp;  gives the&nbsp; '''differential noise entropy'''&nbsp; computable from the PDF&nbsp; $f_N(n)$&nbsp; alone:
$$h(N) =  
+
:$$h(N) =  
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_N)} \hspace{-0.35cm}  f_N(n) \cdot {\rm log}_2 \hspace{0.1cm} [ f_N(n) ] \hspace{0.1cm}{\rm d}n  
+
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_N)} \hspace{-0.35cm}  f_N(n) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_N(n) \big] \hspace{0.1cm}{\rm d}n  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Nimmt man für die Störung <i>N</i> eine Gaußverteilung <i>f<sub>N</sub></i>(<i>n</i>) entsprechend der oberen Skizze an, so ergibt sich die gewünschte Kanalkapazität <i>C</i><sub>BPSK</sub> = <i>I</i>(<i>X</i>; <i>Y</i>), die [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#AWGN.E2.80.93Kanalkapazit.C3.A4t_f.C3.BCr_bin.C3.A4re_Eingangssignale|'''im Theorieteil''']] abhängig von 10&nbsp;&middot;&nbsp;lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) dargestellt ist.
 
  
Beantwortet werden soll in dieser Aufgabe die Frage, ob es einen endlichen <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>&ndash;Wert  gibt, für den '''C<sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &equiv; 1 bit/Kanalzugriff möglich ist''' &nbsp;&#8658;&nbsp; Teilaufgabe (e).
+
Assuming a Gaussian distribution &nbsp;$f_N(n)$&nbsp; for the noise &nbsp;$N$&nbsp; according to the upper sketch,&nbsp; we obtain the channel capacity &nbsp;$C_\text{BPSK} = I(X;Y)$,&nbsp; which is shown in the&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#AWGN_channel_capacity_for_binary_input_signals|theory section]]&nbsp; depending on &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp;.
 +
 
 +
The question to be answered is whether there is a finite &nbsp;$E_{\rm B}/{N_0}$&nbsp; value for which&nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0}) &equiv; 1 \ \rm bit/channel\:use $&nbsp; is possible &nbsp; &#8658; &nbsp; subtask&nbsp; '''(5)'''.
 +
 
 +
In subtasks&nbsp; '''(1)'''&nbsp; to&nbsp; '''(4)''',&nbsp; preliminary work is done to answer this question.&nbsp; The uniformly distributed noise PDF&nbsp; $f_N(n)$&nbsp; is always assumed (see sketch below):
 +
:$$f_N(n) =
 +
\left\{ \begin{array}{c} 1/(2A) \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| < A, \\    {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| > A. \\ \end{array} $$
 +
 
 +
 
 +
 
  
In den Teilaufgaben (a), ... , (d) werden Vorarbeiten zur Beantwortung dieser Frage geleistet. Dabei wird stets von einer gleichverteilten Stör&ndash;WDF <i>f<sub>N</sub></i>(<i>n</i>)  ausgegangen (siehe untere Skizze):
 
$$f_N(n) =
 
\left\{ \begin{array}{c} 1/(2A) \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.3cm} |n| < A, \\    {\rm{f\ddot{u}r}} \hspace{0.3cm} |n| > A. \\ \end{array} $$
 
  
'''Hinweis'''
+
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input|AWGN channel capacitance for discrete input]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input#AWGN_channel_capacity_for_binary_input_signals|AWGN channel capacitance for binary input signals]].
 +
  
:* Die Aufgabe bezieht sich auf [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#AWGN.E2.80.93Kanalkapazit.C3.A4t_f.C3.BCr_bin.C3.A4re_Eingangssignale|'''Seite 5b''']] im [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''Kapitel 4.3.''']]
 
 
    
 
    
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{ What is the differential entropy with the uniform PDF&nbsp; $f_N(n)$&nbsp; and&nbsp; $\underline{A = 1/8}$?
 +
|type="{}"}
 +
$h(N) \ = \ $ { -2.06--1.94 } $\ \rm bit/symbol$
 +
 +
{What is the differential sink entropy with the uniform PDF&nbsp; $f_N(n)$&nbsp; and&nbsp; $\underline{A = 1/8}$?
 +
|type="{}"}
 +
$h(Y) \ = \ $ { -1.03--0.97 }  $\ \rm bit/symbol$
  
{Input-Box Frage
+
{What is the magnitude of the mutual information between the source and sink?&nbsp; Assume further a uniformly distributed impairments with&nbsp; $\underline{A = 1/8}$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$I(X;Y) \ = \ $ { 1 3% } $\ \rm bit/symbol$
  
 +
 +
{Under what conditions does the result of subtask&nbsp; '''(3)'''&nbsp; not change?
 +
|type="[]"}
 +
+ For any&nbsp; $A &#8804; 1$&nbsp; for the given uniform distribution.
 +
+ For any other PDF&nbsp; $f_N(n)$,&nbsp; limited to the range&nbsp; $|\hspace{0.05cm}n\hspace{0.05cm}| < 1$&nbsp;.
 +
+ If &nbsp;$f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=-1)$&nbsp; and &nbsp;$f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=+1)$&nbsp; do not overlap.
 +
 +
 +
{Now answer the crucial question, assuming,&nbsp; that Gaussian noise is the only impairment and the quotient &nbsp;$E_{\rm B}/{N_0}$&nbsp; is finite.
 +
|type="()"}
 +
- $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/channel\:use $&nbsp; is possible with a Gaussian PDF.
 +
+ For Gaussian noise with finite &nbsp;$E_{\rm B}/{N_0}$&nbsp;, &nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  < 1 \ \rm bit/channel\:use $ is always valid.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The differential entropy of a uniform distribution of absolute width&nbsp; $2A$&nbsp; is equal to
'''2.'''
+
:$$ h(N) =  {\rm log}_2 \hspace{0.1cm} (2A)
'''3.'''
+
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
'''4.'''
+
\hspace{0.15cm}h(N) =  {\rm log}_2 \hspace{0.1cm} (1/4)
'''5.'''
+
\hspace{0.15cm}\underline{= -2\,{\rm bit/symbol}}\hspace{0.05cm}.$$
'''6.'''
+
 
'''7.'''
+
 
 +
[[File:EN_Inf_Z_4_9e_neu.png|right|frame|PDF of the output variable &nbsp;$Y$&nbsp;  <br>with uniformly distributed noise &nbsp;$N$]]
 +
'''(2)'''&nbsp; The probability density function at the output is obtained according to the equation:
 +
:$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}x=-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}x=+1) \big  ]\hspace{0.05cm}.$$
 +
The graph shows the result for our example&nbsp; $(A = 1/8)$:
 +
*Drawn in red is the first term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1)$,&nbsp; where the rectangle&nbsp; $f_N(n)$&nbsp; is shifted to the center position&nbsp; $y = -1$&nbsp; and is multiplied by&nbsp; $1/2$&nbsp;.&nbsp; The result is a rectangle of width&nbsp; $2A = 1/4$&nbsp; and height&nbsp; $1/(4A) = 2$.     
 +
*Shown in blue is the second term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1)$&nbsp; centered at&nbsp; $y = +1$.
 +
*Leaving the colors out of account,&nbsp; the total PDF&nbsp; $f_Y(y)$ is obtained.
 +
*The differential entropy is not changed by moving non-overlapping PDF sections. &nbsp;
 +
*Thus, for the differential sink entropy we are looking for,&nbsp; we get:
 +
:$$h(Y) =  {\rm log}_2 \hspace{0.1cm} (4A)
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
 +
\hspace{0.15cm}h(Y) =  {\rm log}_2 \hspace{0.1cm} (1/2)
 +
\hspace{0.15cm}\underline{= -1\,{\rm bit/symbol}}\hspace{0.05cm}.$$
 +
 
 +
 +
'''(3)'''&nbsp; Thus, for the mutual information between source and sink, we obtain:
 +
:$$I(X; Y) = h(Y) \hspace{-0.05cm}-\hspace{-0.05cm} h(N) = (-1\,{\rm bit/symbol})\hspace{-0.05cm} -\hspace{-0.05cm}(-2\,{\rm bit/symbol})
 +
\hspace{0.15cm}\underline{= +1\,{\rm bit/symbol}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>All the proposed solutions</u>&nbsp; are true:
 +
*For each&nbsp; $A &#8804; 1$&nbsp; holds
 +
:$$ h(Y)  =    {\rm log}_2 \hspace{0.1cm} (4A) = {\rm log}_2 \hspace{0.1cm} (2A) + {\rm log}_2 \hspace{0.1cm} (2)\hspace{0.05cm}, \hspace{0.5cm}
 +
h(N)  =    {\rm log}_2 \hspace{0.1cm} (2A)$$
 +
:$$\Rightarrow \hspace{0.3cm} I(X; Y) = h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(N) = {\rm log}_2 \hspace{0.1cm} (2)
 +
\hspace{0.15cm}\underline{= +1\,{\rm bit/symbol}}\hspace{0.05cm}.$$
 +
[[File:EN_Inf_Z_4_9e.png|right|frame|PDF of the output quantity &nbsp;$Y$&nbsp;  <br>with Gaussian noise &nbsp;$N$]]
 +
*This principle does not change even if the PDF&nbsp; $f_N(n)$&nbsp;  is different,&nbsp; as long as the noise is limited to the range&nbsp; $|\hspace{0.05cm}n\hspace{0.05cm}| &#8804; 1$&nbsp;.
 +
*However,&nbsp; if the two conditional probability density functions overlap,&nbsp; the result is a smaller value for&nbsp; $h(Y)$&nbsp; than calculated above and thus smaller mutual information.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
* The Gaussian function decays very fast,&nbsp; but it never becomes exactly equal to zero.
 +
* There is always an overlap of the conditional density functions&nbsp; $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}x=-1)$&nbsp; and&nbsp;  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}x=+1)$.
 +
*According to subtask&nbsp; '''(4)'''&nbsp;,&nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/channel\:use $&nbsp; is therefore not possible.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN–Kanalkapazität bei wertdiskretem Eingang^]]
+
[[Category:Information Theory: Exercises|^4.3 AWGN and Value-Discrete Input^]]

Latest revision as of 17:11, 9 November 2021

Two different PDFs  $f_N(n)$  for the impairments  (e.g. noise)

We assume here a binary bipolar source signal   ⇒   $ x \in X = \{+1, -1\}$.

Thus,  the probability density function  $\rm (PDF)$  of the source is:

$$f_X(x) = {1}/{2} \cdot \delta (x-1) + {1}/{2} \cdot \delta (x+1)\hspace{0.05cm}. $$

The mutual information between the source  $X$  and the sink  $Y$  can be calculated according to the equation

$$I(X;Y) = h(Y) - h(N)$$

where holds:

  • $h(Y)$  denotes the  differential sink entropy
$$h(Y) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_Y(y) \big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm},$$
$${\rm with}\hspace{0.5cm} f_Y(y) = {1}/{2} \cdot \big[ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=+1) \big ]\hspace{0.05cm}.$$
  • $h(N)$  gives the  differential noise entropy  computable from the PDF  $f_N(n)$  alone:
$$h(N) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_N)} \hspace{-0.35cm} f_N(n) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_N(n) \big] \hspace{0.1cm}{\rm d}n \hspace{0.05cm}.$$

Assuming a Gaussian distribution  $f_N(n)$  for the noise  $N$  according to the upper sketch,  we obtain the channel capacity  $C_\text{BPSK} = I(X;Y)$,  which is shown in the  theory section  depending on  $10 \cdot \lg (E_{\rm B}/{N_0})$ .

The question to be answered is whether there is a finite  $E_{\rm B}/{N_0}$  value for which  $C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is possible   ⇒   subtask  (5).

In subtasks  (1)  to  (4),  preliminary work is done to answer this question.  The uniformly distributed noise PDF  $f_N(n)$  is always assumed (see sketch below):

$$f_N(n) = \left\{ \begin{array}{c} 1/(2A) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| < A, \\ {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| > A. \\ \end{array} $$



Hints:



Questions

1

What is the differential entropy with the uniform PDF  $f_N(n)$  and  $\underline{A = 1/8}$?

$h(N) \ = \ $

$\ \rm bit/symbol$

2

What is the differential sink entropy with the uniform PDF  $f_N(n)$  and  $\underline{A = 1/8}$?

$h(Y) \ = \ $

$\ \rm bit/symbol$

3

What is the magnitude of the mutual information between the source and sink?  Assume further a uniformly distributed impairments with  $\underline{A = 1/8}$ .

$I(X;Y) \ = \ $

$\ \rm bit/symbol$

4

Under what conditions does the result of subtask  (3)  not change?

For any  $A ≤ 1$  for the given uniform distribution.
For any other PDF  $f_N(n)$,  limited to the range  $|\hspace{0.05cm}n\hspace{0.05cm}| < 1$ .
If  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=-1)$  and  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=+1)$  do not overlap.

5

Now answer the crucial question, assuming,  that Gaussian noise is the only impairment and the quotient  $E_{\rm B}/{N_0}$  is finite.

$C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is possible with a Gaussian PDF.
For Gaussian noise with finite  $E_{\rm B}/{N_0}$ ,   $C_\text{BPSK}(E_{\rm B}/{N_0}) < 1 \ \rm bit/channel\:use $ is always valid.


Solution

(1)  The differential entropy of a uniform distribution of absolute width  $2A$  is equal to

$$ h(N) = {\rm log}_2 \hspace{0.1cm} (2A) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}: \hspace{0.15cm}h(N) = {\rm log}_2 \hspace{0.1cm} (1/4) \hspace{0.15cm}\underline{= -2\,{\rm bit/symbol}}\hspace{0.05cm}.$$


PDF of the output variable  $Y$ 
with uniformly distributed noise  $N$

(2)  The probability density function at the output is obtained according to the equation:

$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}x=-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}x=+1) \big ]\hspace{0.05cm}.$$

The graph shows the result for our example  $(A = 1/8)$:

  • Drawn in red is the first term  ${1}/{2} \cdot f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1)$,  where the rectangle  $f_N(n)$  is shifted to the center position  $y = -1$  and is multiplied by  $1/2$ .  The result is a rectangle of width  $2A = 1/4$  and height  $1/(4A) = 2$.
  • Shown in blue is the second term  ${1}/{2} \cdot f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1)$  centered at  $y = +1$.
  • Leaving the colors out of account,  the total PDF  $f_Y(y)$ is obtained.
  • The differential entropy is not changed by moving non-overlapping PDF sections.  
  • Thus, for the differential sink entropy we are looking for,  we get:
$$h(Y) = {\rm log}_2 \hspace{0.1cm} (4A) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}: \hspace{0.15cm}h(Y) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= -1\,{\rm bit/symbol}}\hspace{0.05cm}.$$


(3)  Thus, for the mutual information between source and sink, we obtain:

$$I(X; Y) = h(Y) \hspace{-0.05cm}-\hspace{-0.05cm} h(N) = (-1\,{\rm bit/symbol})\hspace{-0.05cm} -\hspace{-0.05cm}(-2\,{\rm bit/symbol}) \hspace{0.15cm}\underline{= +1\,{\rm bit/symbol}}\hspace{0.05cm}.$$


(4)  All the proposed solutions  are true:

  • For each  $A ≤ 1$  holds
$$ h(Y) = {\rm log}_2 \hspace{0.1cm} (4A) = {\rm log}_2 \hspace{0.1cm} (2A) + {\rm log}_2 \hspace{0.1cm} (2)\hspace{0.05cm}, \hspace{0.5cm} h(N) = {\rm log}_2 \hspace{0.1cm} (2A)$$
$$\Rightarrow \hspace{0.3cm} I(X; Y) = h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(N) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= +1\,{\rm bit/symbol}}\hspace{0.05cm}.$$
PDF of the output quantity  $Y$ 
with Gaussian noise  $N$
  • This principle does not change even if the PDF  $f_N(n)$  is different,  as long as the noise is limited to the range  $|\hspace{0.05cm}n\hspace{0.05cm}| ≤ 1$ .
  • However,  if the two conditional probability density functions overlap,  the result is a smaller value for  $h(Y)$  than calculated above and thus smaller mutual information.


(5)  Correct is the  proposed solution 2:

  • The Gaussian function decays very fast,  but it never becomes exactly equal to zero.
  • There is always an overlap of the conditional density functions  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}x=-1)$  and  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}x=+1)$.
  • According to subtask  (4) ,  $C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is therefore not possible.