Difference between revisions of "Aufgaben:Exercise 4.9Z: Is Channel Capacity C ≡ 1 possible with BPSK?"

From LNTwww
Line 25: Line 25:
 
Assuming a Gaussian distribution  $f_N(n)$  for the noise  $N$  according to the upper sketch, we obtain the channel capacity  $C_\text{BPSK} = I(X;Y)$, which is shown in the  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#AWGN_channel_capacity_for_binary_input_signals|theory section]]  depending on  $10 \cdot \lg (E_{\rm B}/{N_0})$ .
 
Assuming a Gaussian distribution  $f_N(n)$  for the noise  $N$  according to the upper sketch, we obtain the channel capacity  $C_\text{BPSK} = I(X;Y)$, which is shown in the  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#AWGN_channel_capacity_for_binary_input_signals|theory section]]  depending on  $10 \cdot \lg (E_{\rm B}/{N_0})$ .
  
The question to be answered is whether there is a finite  $E_{\rm B}/{N_0}$ value for which  $C_\text{BPSK}(E_{\rm B}/{N_0})  ≡ 1 \ \rm bit/channel use $  is possible   ⇒   subtask  '''(5)'''.
+
The question to be answered is whether there is a finite  $E_{\rm B}/{N_0}$ value for which  $C_\text{BPSK}(E_{\rm B}/{N_0})  ≡ 1 \ \rm bit/channel\:use $  is possible   ⇒   subtask  '''(5)'''.
  
 
In subtasks  '''(1)'''  to  '''(4)''' , preliminary work is done to answer this question. The uniformly distributed noise PDF  $f_N(n)$  is always assumed (see sketch below):
 
In subtasks  '''(1)'''  to  '''(4)''' , preliminary work is done to answer this question. The uniformly distributed noise PDF  $f_N(n)$  is always assumed (see sketch below):
Line 51: Line 51:
 
{ What is the differential interference entropy for uniformly distributed interference with  $\underline{A = 1/8}$?
 
{ What is the differential interference entropy for uniformly distributed interference with  $\underline{A = 1/8}$?
 
|type="{}"}
 
|type="{}"}
$h(N) \ = \ $ { -2.06--1.94 } $\ \rm bit/Symbol$
+
$h(N) \ = \ $ { -2.06--1.94 } $\ \rm bit/symbol$
  
 
{What is the differential sink entropy for uniformly distributed noise with  $\underline{A = 1/8}$?
 
{What is the differential sink entropy for uniformly distributed noise with  $\underline{A = 1/8}$?
 
|type="{}"}
 
|type="{}"}
$h(Y) \ = \ $ { -1.03--0.97 }  $\ \rm bit/Symbol$
+
$h(Y) \ = \ $ { -1.03--0.97 }  $\ \rm bit/symbol$
  
{What is the magnitude of the mutual information between the source and sink?  Assume further a uniformly distributed noise with  $\underline{A = 1/8}$  aus.
+
{What is the magnitude of the mutual information between the source and sink?  Assume further a uniformly distributed noise with  $\underline{A = 1/8}$ .
 
|type="{}"}
 
|type="{}"}
$I(X;Y) \ = \ $ { 1 3% } $\ \rm bit/Symbol$
+
$I(X;Y) \ = \ $ { 1 3% } $\ \rm bit/symbol$
  
  
Line 71: Line 71:
 
{Now answer the crucial question, assuming, <br>that a Gaussian perturbation is present and the quotient &nbsp;$E_{\rm B}/{N_0}$&nbsp; is finite.
 
{Now answer the crucial question, assuming, <br>that a Gaussian perturbation is present and the quotient &nbsp;$E_{\rm B}/{N_0}$&nbsp; is finite.
 
|type="()"}
 
|type="()"}
- $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/channel use $&nbsp; is possible with a Gaussian PDF.
+
- $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/channel\:use $&nbsp; is possible with a Gaussian PDF.
+ For Gaussian noise with finite &nbsp;$E_{\rm B}/{N_0}$&nbsp;, &nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  < 1 \ \rm bit/channel use $ is always valid..
+
+ For Gaussian noise with finite &nbsp;$E_{\rm B}/{N_0}$&nbsp;, &nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  < 1 \ \rm bit/channel\:use $ is always valid..
  
  
Line 79: Line 79:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die differentielle Entropie einer Gleichverteilung der absoluten Breite&nbsp; $2A$&nbsp; ist gleich
+
'''(1)'''&nbsp; The differential entropy of a uniform distribution of absolute width&nbsp; $2A$&nbsp; is equal to
 
:$$ h(N) =  {\rm log}_2 \hspace{0.1cm} (2A)
 
:$$ h(N) =  {\rm log}_2 \hspace{0.1cm} (2A)
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
 
\hspace{0.15cm}h(N) =  {\rm log}_2 \hspace{0.1cm} (1/4)
 
\hspace{0.15cm}h(N) =  {\rm log}_2 \hspace{0.1cm} (1/4)
\hspace{0.15cm}\underline{= -2\,{\rm bit(/Symbol)}}\hspace{0.05cm}.$$
+
\hspace{0.15cm}\underline{= -2\,{\rm bit(/symbol)}}\hspace{0.05cm}.$$
  
  
  
[[File:EN_Inf_Z_4_9b.png|right|frame|WDF der Ausgangsgröße &nbsp;$Y$&nbsp;  <br>bei gleichverteilter Störung  &nbsp;$N$]]
+
[[File:EN_Inf_Z_4_9b.png|right|frame|PDF of the output variable &nbsp;$Y$&nbsp;  <br>with uniformly distributed noise &nbsp;$N$]]
'''(2)'''&nbsp; Die Wahrscheinlichkeitsdichtefunktion am Ausgang ergibt sich gemäß der Gleichung:
+
'''(2)'''&nbsp; The probability density function at the output is obtained according to the equation:
 
:$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1) \big  ]\hspace{0.05cm}.$$
 
:$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1) \big  ]\hspace{0.05cm}.$$
Die Grafik zeigt das Ergebnis für unser Beispiel&nbsp; $(A = 1/8)$:
+
The graph shows the result for our example&nbsp; $(A = 1/8)$:
* Rot gezeichnet ist der erste Term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1)$, wobei das Rechteck&nbsp; $f_N(n)$&nbsp; an die Stelle&nbsp; $y = -1$&nbsp; verschoben und mit&nbsp; $1/2$&nbsp; multipliziert wird.&nbsp; Es ergibt sich ein Rechteck der Breite&nbsp; $2A = 1/4$&nbsp; und der Höhe&nbsp; $1/(4A) = 2$.       
+
*Drawn in red is the first term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1)$, where the rectangle&nbsp; $f_N(n)$&nbsp; is shifted to the position&nbsp; $y = -1$&nbsp; and multiplied by&nbsp; $1/2$&nbsp;.&nbsp; The result is a rectangle of width&nbsp; $2A = 1/4$&nbsp; and height&nbsp; $1/(4A) = 2$.       
* Blau dargestellt ist der zweite Term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1)$&nbsp; mit der Mitte bei&nbsp; $y = +1$.
+
*Shown in blue is the second term&nbsp; ${1}/{2} \cdot  f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1)$&nbsp; centered at&nbsp; $y = +1$.
* Lässt man die Farben außer Betracht, so ergibt sich die gesamte WDF&nbsp; $f_Y(y)$.
+
*Leaving the colors out of account, the total PDF&nbsp; $f_Y(y)$ is obtained.
  
*Die differentiellen Entropie wird nicht verändert wird, wenn man nicht überlappende WDF–Abschnitte verschiebt.&nbsp;  
+
*The differential entropy is not changed by moving non-overlapping PDF sections. &nbsp;  
*Somit ergibt sich für die gesuchte differentielle Sinkenentropie:
+
*Thus, for the differential sink entropy we are looking for, we get:
 
:$$h(Y) =  {\rm log}_2 \hspace{0.1cm} (4A)
 
:$$h(Y) =  {\rm log}_2 \hspace{0.1cm} (4A)
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}:
 
\hspace{0.15cm}h(Y) =  {\rm log}_2 \hspace{0.1cm} (1/2)
 
\hspace{0.15cm}h(Y) =  {\rm log}_2 \hspace{0.1cm} (1/2)
\hspace{0.15cm}\underline{= -1\,{\rm bit(/Symbol)}}\hspace{0.05cm}.$$
+
\hspace{0.15cm}\underline{= -1\,{\rm bit(/symbol)}}\hspace{0.05cm}.$$
  
  
 
   
 
   
'''(3)'''&nbsp; Damit erhält man für die Transinformation zwischen Quelle und Sinke:
+
'''(3)'''&nbsp; Thus, for the mutual information between source and sink, we obtain:
:$$I(X; Y) = h(Y) \hspace{-0.05cm}-\hspace{-0.05cm} h(N) = (-1\,{\rm bit/Symbol})\hspace{-0.05cm} -\hspace{-0.05cm}(-2\,{\rm bit/Symbol})  
+
:$$I(X; Y) = h(Y) \hspace{-0.05cm}-\hspace{-0.05cm} h(N) = (-1\,{\rm bit/symbol})\hspace{-0.05cm} -\hspace{-0.05cm}(-2\,{\rm bit/symbol})  
 
\hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; <u>Alle Lösungsvorschläge</u> sind zutreffend:
+
'''(4)'''&nbsp; <u>All the proposed solutions</u> are true:
* Für jedes&nbsp; $A &#8804; 1$&nbsp; gilt
+
*For each&nbsp; $A &#8804; 1$&nbsp; holds
 
:$$ h(Y)  =    {\rm log}_2 \hspace{0.1cm} (4A) = {\rm log}_2 \hspace{0.1cm} (2A) + {\rm log}_2 \hspace{0.1cm} (2)\hspace{0.05cm}, \hspace{0.5cm}
 
:$$ h(Y)  =    {\rm log}_2 \hspace{0.1cm} (4A) = {\rm log}_2 \hspace{0.1cm} (2A) + {\rm log}_2 \hspace{0.1cm} (2)\hspace{0.05cm}, \hspace{0.5cm}
 
h(N)  =    {\rm log}_2 \hspace{0.1cm} (2A)$$
 
h(N)  =    {\rm log}_2 \hspace{0.1cm} (2A)$$
 
:$$\Rightarrow \hspace{0.3cm} I(X; Y) = h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(N) = {\rm log}_2 \hspace{0.1cm} (2)
 
:$$\Rightarrow \hspace{0.3cm} I(X; Y) = h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(N) = {\rm log}_2 \hspace{0.1cm} (2)
 
\hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$
* An diesem Prinzip ändert sich auch bei anderer WDF&nbsp; $f_N(n)$&nbsp; nichts, solange die Störung auf den Bereich&nbsp; $|\hspace{0.05cm}n\hspace{0.05cm}| &#8804; 1$&nbsp; begrenzt ist.
+
*This principle does not change even if the PDF&nbsp; $f_N(n)$&nbsp; is different, as long as the noise is limited to the range&nbsp; $|\hspace{0.05cm}n\hspace{0.05cm}| &#8804; 1$&nbsp;.
* Überlappen sich jedoch die beiden bedingten Wahrscheinlichkeitsdichtefunktionen, so ergibt sich für&nbsp; $h(Y)$&nbsp; ein kleinerer Wert als oben berechnet und damit auch eine kleinere Transinformation.
+
*However, if the two conditional probability density functions overlap, the result is a smaller value for&nbsp; $h(Y)$&nbsp; than calculated above and thus smaller mutual information.
  
  
  
  
[[File:EN_Inf_Z_4_9e.png|right|frame|WDF der Ausgangsgröße &nbsp;$Y$&nbsp;  <br>bei gaußverteilter Störung  &nbsp;$N$]]
+
[[File:EN_Inf_Z_4_9e.png|right|frame|PDF of the output quantity &nbsp;$Y$&nbsp;  <br>with Gaussian noise &nbsp;$N$]]
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(5)'''&nbsp; Correct is the <u>proposed solution 2</u>:
* Die Gaußfunktion klingt zwar sehr schnell ab, sie wird aber nie exakt gleich Null.
+
* The Gaussian function decays very fast, but it never becomes exactly equal to zero.
* Es kommt hier immer zu einer Überlappung der bedingten Dichtefunktionen&nbsp; $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}-1)$&nbsp; und&nbsp;  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}+1)$.
+
* There is always an overlap of the conditional density functions&nbsp; $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}-1)$&nbsp; and&nbsp;  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}+1)$.
* Entsprechend der Teilaufgabe&nbsp; '''(4)'''&nbsp; ist deshalb&nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/Kanalzugriff $&nbsp; nicht möglich.
+
*According to subtask&nbsp; '''(4)'''&nbsp;,&nbsp; $C_\text{BPSK}(E_{\rm B}/{N_0})  &equiv; 1 \ \rm bit/channel\:use $&nbsp; is therefore not possible.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 22:25, 1 November 2021

Two different
density functions  $f_N(n)$

We assume here a binary bipolar source signal   ⇒   $ x \in X = \{+1, -1\}$.

Thus, the probability density function (PDF) of the source is:

$$f_X(x) = {1}/{2} \cdot \delta (x-1) + {1}/{2} \cdot \delta (x+1)\hspace{0.05cm}. $$

The mutual information between the source  $X$  and the sink  $Y$  can be calculated according to the equation

$$I(X;Y) = h(Y) - h(N)$$

where holds:

  • $h(Y)$  denotes the  differential sink entropy
$$h(Y) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_Y(y) \big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm},$$
$${\rm with}\hspace{0.5cm} f_Y(y) = {1}/{2} \cdot \big[ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=+1) \big ]\hspace{0.05cm}.$$
  • $h(N)$  gives the  differential noise entropy  computable from the PDF  $f_N(n)$ alone:
$$h(N) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}(f_N)} \hspace{-0.35cm} f_N(n) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_N(n) \big] \hspace{0.1cm}{\rm d}n \hspace{0.05cm}.$$

Assuming a Gaussian distribution  $f_N(n)$  for the noise  $N$  according to the upper sketch, we obtain the channel capacity  $C_\text{BPSK} = I(X;Y)$, which is shown in the  theory section  depending on  $10 \cdot \lg (E_{\rm B}/{N_0})$ .

The question to be answered is whether there is a finite  $E_{\rm B}/{N_0}$ value for which  $C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is possible   ⇒   subtask  (5).

In subtasks  (1)  to  (4) , preliminary work is done to answer this question. The uniformly distributed noise PDF  $f_N(n)$  is always assumed (see sketch below):

$$f_N(n) = \left\{ \begin{array}{c} 1/(2A) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| < A, \\ {\rm{f\ddot{u}r}} \hspace{0.3cm} |\hspace{0.05cm}n\hspace{0.05cm}| > A. \\ \end{array} $$





Hints:



Questions

1

What is the differential interference entropy for uniformly distributed interference with  $\underline{A = 1/8}$?

$h(N) \ = \ $

$\ \rm bit/symbol$

2

What is the differential sink entropy for uniformly distributed noise with  $\underline{A = 1/8}$?

$h(Y) \ = \ $

$\ \rm bit/symbol$

3

What is the magnitude of the mutual information between the source and sink?  Assume further a uniformly distributed noise with  $\underline{A = 1/8}$ .

$I(X;Y) \ = \ $

$\ \rm bit/symbol$

4

Under what conditions does the result of subtask  (3)  not change?

For any  $A ≤ 1$  for the given uniform distribution.
For any other PDF  $f_N(n)$, limited to the range  $|\hspace{0.05cm}n\hspace{0.05cm}| < 1$ .
If  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=-1)$  and  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}{X}=+1)$  do not overlap.

5

Now answer the crucial question, assuming,
that a Gaussian perturbation is present and the quotient  $E_{\rm B}/{N_0}$  is finite.

$C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is possible with a Gaussian PDF.
For Gaussian noise with finite  $E_{\rm B}/{N_0}$ ,   $C_\text{BPSK}(E_{\rm B}/{N_0}) < 1 \ \rm bit/channel\:use $ is always valid..


Solution

(1)  The differential entropy of a uniform distribution of absolute width  $2A$  is equal to

$$ h(N) = {\rm log}_2 \hspace{0.1cm} (2A) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}: \hspace{0.15cm}h(N) = {\rm log}_2 \hspace{0.1cm} (1/4) \hspace{0.15cm}\underline{= -2\,{\rm bit(/symbol)}}\hspace{0.05cm}.$$


PDF of the output variable  $Y$ 
with uniformly distributed noise  $N$

(2)  The probability density function at the output is obtained according to the equation:

$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1) + f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1) \big ]\hspace{0.05cm}.$$

The graph shows the result for our example  $(A = 1/8)$:

  • Drawn in red is the first term  ${1}/{2} \cdot f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}-1)$, where the rectangle  $f_N(n)$  is shifted to the position  $y = -1$  and multiplied by  $1/2$ .  The result is a rectangle of width  $2A = 1/4$  and height  $1/(4A) = 2$.
  • Shown in blue is the second term  ${1}/{2} \cdot f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}+1)$  centered at  $y = +1$.
  • Leaving the colors out of account, the total PDF  $f_Y(y)$ is obtained.
  • The differential entropy is not changed by moving non-overlapping PDF sections.  
  • Thus, for the differential sink entropy we are looking for, we get:
$$h(Y) = {\rm log}_2 \hspace{0.1cm} (4A) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A=1/8\hspace{-0.05cm}: \hspace{0.15cm}h(Y) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= -1\,{\rm bit(/symbol)}}\hspace{0.05cm}.$$


(3)  Thus, for the mutual information between source and sink, we obtain:

$$I(X; Y) = h(Y) \hspace{-0.05cm}-\hspace{-0.05cm} h(N) = (-1\,{\rm bit/symbol})\hspace{-0.05cm} -\hspace{-0.05cm}(-2\,{\rm bit/symbol}) \hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$


(4)  All the proposed solutions are true:

  • For each  $A ≤ 1$  holds
$$ h(Y) = {\rm log}_2 \hspace{0.1cm} (4A) = {\rm log}_2 \hspace{0.1cm} (2A) + {\rm log}_2 \hspace{0.1cm} (2)\hspace{0.05cm}, \hspace{0.5cm} h(N) = {\rm log}_2 \hspace{0.1cm} (2A)$$
$$\Rightarrow \hspace{0.3cm} I(X; Y) = h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(N) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= +1\,{\rm bit/Symbol}}\hspace{0.05cm}.$$
  • This principle does not change even if the PDF  $f_N(n)$  is different, as long as the noise is limited to the range  $|\hspace{0.05cm}n\hspace{0.05cm}| ≤ 1$ .
  • However, if the two conditional probability density functions overlap, the result is a smaller value for  $h(Y)$  than calculated above and thus smaller mutual information.



PDF of the output quantity  $Y$ 
with Gaussian noise  $N$

(5)  Correct is the proposed solution 2:

  • The Gaussian function decays very fast, but it never becomes exactly equal to zero.
  • There is always an overlap of the conditional density functions  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}-1)$  and  $f_{Y\hspace{0.05cm}|\hspace{0.05cm}{X}}(y\hspace{0.08cm}|\hspace{0.05cm}+1)$.
  • According to subtask  (4) ,  $C_\text{BPSK}(E_{\rm B}/{N_0}) ≡ 1 \ \rm bit/channel\:use $  is therefore not possible.