Difference between revisions of "Aufgaben:Exercise 5.2Z: Two-Way Channel"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Stochastische Systemtheorie
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Stochastic_System_Theory
 
}}
 
}}
  
[[File:P_ID517__Sto_Z_5_2.png|right|frame|Zweiwegekanal–Impulsantwort  $h(t)$  und  $h(t) * h( { - t} )$]]
+
[[File:P_ID517__Sto_Z_5_2.png|right|frame|Two–way channel impulse responses  $h(t)$,  $h(t) * h( { - t} )$]]
Von einem Übertragungssystem ist bekannt, dass zwischen dem Eingangssignal  $x(t)$  und dem  Ausgangssignal  $y(t)$  der folgende Zusammenhang besteht:
+
From a transmission system it is known  that following relationship exists between the input signal  $x(t)$  and the output signal  $y(t)$ :
 
:$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$
 
:$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$
  
Die dazugehörige Impulsantwort   $h(t)$  ist oben skizziert.
+
The corresponding impulse response   $h(t)$  is sketched above.
  
In der unteren Skizze ist die Funktion
+
In the sketch below,   the function
 
:$$h(t) * h( { - t} )\hspace{0.25cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.25cm}\left| {H(f)} \right|^2$$
 
:$$h(t) * h( { - t} )\hspace{0.25cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.25cm}\left| {H(f)} \right|^2$$
  
dargestellt, wobei die Parameter  $C_0$,  $C_3$  und  $\tau_3$  von  $\alpha$,  $\tau_1$  und  $\tau_2$  abhängen   ⇒   siehe Teilaufgabe  '''(4)'''.
+
is shown,  where the parameters  $C_0$,  $C_3$  and  $\tau_3$  depend on  $\alpha$,  $\tau_1$  and  $\tau_2$   ⇒   see subtask  '''(4)'''.
  
Das Eingangssignal  $x(t)$  sei bandbegrenztes weißes Rauschen
+
Let the input signal  $x(t)$  be band-limited white noise
*mit der Leistungsdichte  $N_0 = 10^{-6} \hspace{0.08cm} \rm W/Hz$  
+
*with power density  $N_0 = 10^{-6} \hspace{0.08cm} \rm W/Hz$  
*und der Bandbreite  $B = 10 \hspace{0.08cm} \rm kHz$,  
+
*and bandwidth  $B = 10 \hspace{0.08cm} \rm kHz$,  
  
  
woraus die Leistung   $P_x = 10 \hspace{0.08cm} \rm mW$  berechnet werden kann.
+
from which the power   $P_x = 10 \hspace{0.08cm} \rm mW$  can be calculated.
  
  
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Stochastic_System_Theory| Stochastic System Theory]].
 
+
*Use always the value  $\alpha = 0.5$  for numerical calculations.
''Hinweise:''
+
*For the subtasks  '''(1)'''  and  '''(2)''',  let  $\tau_1 = 0$  and  $\tau_2 = 4\hspace{0.08cm}\rm ms$  be valid.
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Stochastische_Systemtheorie|Stochastische Systemtheorie]].
+
*For later tasks,  assume  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$.
*Verwenden Sie für die numerischen Berechnungen stets den Wert  $\alpha = 0.5$.  
 
*Für die Teilaufgaben  '''(1)'''  und  '''(2)'''  gelte zudem  $\tau_1 = 0$  und  $\tau_2 = 4\hspace{0.08cm}\rm ms$.  
 
*Für die späteren Aufgabenteile soll von  $\tau_1 = 1\hspace{0.08cm}\rm ms$  und  $\tau_2 = 5\hspace{0.08cm}\rm ms$ ausgegangen werden.
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang&nbsp; $H(f)$&nbsp; für&nbsp; $\tau_1 = 0$&nbsp; und $\tau_2 = 4\hspace{0.08cm}\rm ms$.&nbsp; Zeigen Sie, dass&nbsp; $H(f)$&nbsp; eine mit&nbsp; $f_0$&nbsp; periodische Funktion ist.&nbsp; Wie groß ist&nbsp; $f_0$?
+
{Calculate the frequency response&nbsp; $H(f)$&nbsp; for&nbsp; $\tau_1 = 0$&nbsp; and $\tau_2 = 4\hspace{0.08cm}\rm ms$.&nbsp; Show that&nbsp; $H(f)$&nbsp; is a periodic function with&nbsp; $f_0$.&nbsp; &nbsp; What is the value of $f_0$?
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ $  { 0.25 3% } $\ \rm kHz$
 
$f_0 \ = \ $  { 0.25 3% } $\ \rm kHz$
  
  
{Wie groß ist&nbsp; $|H(f)|^2$&nbsp; mit&nbsp; $\tau_1 = 0$,&nbsp; $\tau_2 = 4\hspace{0.08cm}\rm ms$&nbsp; und&nbsp; $\alpha = 0.5$?&nbsp; Geben Sie den Wert bei&nbsp; $f = 0$&nbsp; ein.
+
{What is the size of&nbsp; $|H(f)|^2$&nbsp; with&nbsp; $\tau_1 = 0$,&nbsp; $\tau_2 = 4\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\alpha = 0.5$?&nbsp; Enter the value at $f = 0$.&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$|H(f = 0)|^2 \ = \ $ { 2.25 3% }
 
$|H(f = 0)|^2 \ = \ $ { 2.25 3% }
  
  
{Wie verändert sich&nbsp;  $|H(f)|^2$&nbsp; mit&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; und&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$?&nbsp; Die Dämpfungskonstante sei weiterhin&nbsp; $\alpha = 0.5$.&nbsp; Geben Sie den Wert bei&nbsp; $f = 0$&nbsp; ein.
+
{How does&nbsp;  $|H(f)|^2$&nbsp; change with&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$?&nbsp; Let the attenuation constant still be&nbsp; $\alpha = 0.5$.&nbsp; Enter the value at $f = 0$.&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$|H(f = 0)|^2  \ =  \ $ { 2.25 }
 
$|H(f = 0)|^2  \ =  \ $ { 2.25 }
  
  
{Es gelte weiterhin&nbsp; $\alpha = 0.5$,&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; und&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$.&nbsp; Welche Werte ergeben sich für die Funktionsparameter von&nbsp; $h(t) \star  h(-t)$&nbsp; gemäß der Skizze?
+
{Let&nbsp; $\alpha = 0.5$,&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$ still hold.&nbsp; Which values result for the function parameters of&nbsp; $h(t) \star  h(-t)$&nbsp; according to the diagram?
 
|type="{}"}
 
|type="{}"}
 
$C_0 \ =  \ ${ 1.25 3% }
 
$C_0 \ =  \ ${ 1.25 3% }
Line 61: Line 58:
  
  
{Wie groß ist die Leistung des Ausgangssignals&nbsp; $y(t)$?
+
{What is the power of the output signal&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_y \ =  \ $ { 12.5 3% } $\ \rm mW$
 
$P_y \ =  \ $ { 12.5 3% } $\ \rm mW$
Line 69: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; $H(f)$&nbsp; ist die Fouriertransformierte zu&nbsp; $h(t)$.  
+
'''(1)'''&nbsp; $H(f)$&nbsp; is the Fourier transform to&nbsp; $h(t)$.  
*Mit dem Verschiebungssatz lautet diese&nbsp; $(\tau_1 = 0)$:
+
*Using the shifting theorem,&nbsp; this is with &nbsp; $\tau_1 = 0$:
 
:$$H(f) = 1 + \alpha  \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 }  = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
 
:$$H(f) = 1 + \alpha  \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 }  = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  
*Falls&nbsp; $H(f)$&nbsp; periodisch mit&nbsp; $f_0$&nbsp; ist, muss für alle ganzzahligen Werte von&nbsp; $i$&nbsp; gelten: &nbsp;  
+
*If&nbsp; $H(f)$&nbsp; is periodic with $f_0$,&nbsp; then for all integer values of&nbsp; $i$&nbsp; must hold: &nbsp;  
 
:$$H( {f + i \cdot f_0 } ) = H( f ).$$
 
:$$H( {f + i \cdot f_0 } ) = H( f ).$$
*Mit&nbsp; $f_0 = 1/\tau_2\hspace{0.15cm} \underline{=  0.25 \hspace{0.05cm}\rm kHz}$&nbsp; ist diese Bedingung erfüllt.
+
*With&nbsp; $f_0 = 1/\tau_2\hspace{0.15cm} \underline{=  0.25 \hspace{0.05cm}\rm kHz}$&nbsp; this condition is satisfied.
 
:$$H( {f + i \cdot f_0 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
 
:$$H( {f + i \cdot f_0 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  
  
 
+
'''(2)'''&nbsp; The magnitude square is the sum of squared real part and squared imaginary part:
'''(2)'''&nbsp; Das Betragsquadrat ist die Summe von quadriertem Realteil und quadriertem Imaginärteil:
 
 
:$$\left| {H( f )} \right|^2  = \left( {1 + \alpha  \cdot \cos ( A )} \right)^2  + \left( {\alpha  \cdot \sin ( A )} \right)^2 .$$
 
:$$\left| {H( f )} \right|^2  = \left( {1 + \alpha  \cdot \cos ( A )} \right)^2  + \left( {\alpha  \cdot \sin ( A )} \right)^2 .$$
  
*Hierbei ist das Winkelargument mit&nbsp; $A = 2\pi f \tau$&nbsp; abgekürzt.&nbsp; Nach Ausmultiplizieren erhält man wegen&nbsp; $\cos^2(A) + \sin^2(A) = 1$:
+
*Here the angle argument is abbreviated as&nbsp; $A = 2\pi f \tau$.&nbsp; &nbsp; After multiplying,&nbsp; we get because of&nbsp; $\cos^2(A) + \sin^2(A) = 1$:
 
:$$\left| {H(f)} \right|^2  = 1 + \alpha ^2  + 2\alpha  \cdot \cos ( A ).$$
 
:$$\left| {H(f)} \right|^2  = 1 + \alpha ^2  + 2\alpha  \cdot \cos ( A ).$$
  
*Bei der Frequenz&nbsp; $f = 0$&nbsp; $($und somit &nbsp; $A = 0)$&nbsp; ergibt sich allgemein bzw. mit&nbsp; $\alpha = 0.5$:
+
*At the frequency $f = 0$&nbsp; $($and thus &nbsp; $A = 0)$,&nbsp; the result with&nbsp; $\alpha = 0.5$&nbsp; is:
 
:$$\left| {H( {f = 0} )} \right|^2  = \left( {1 + \alpha } \right)^2  = 1.5^2\hspace{0.15cm} \underline{  = 2.25}.$$
 
:$$\left| {H( {f = 0} )} \right|^2  = \left( {1 + \alpha } \right)^2  = 1.5^2\hspace{0.15cm} \underline{  = 2.25}.$$
  
  
 +
'''(3)'''&nbsp; Now the transmission system can be composed of two subsystems&nbsp; (see diagram):
 +
[[File:P_ID551__Sto_Z_5_2_c.png|frame|Splitting the impulse response into two subsystems]]
  
'''(3)'''&nbsp; Nun lässt sich das Übertragungssystem aus zwei Teilsystemen zusammensetzen (siehe Skizze):
+
*The transfer function&nbsp; $H_1(f)$&nbsp; is calculated as in subtask&nbsp; '''(2)'''.&nbsp;  
[[File:P_ID551__Sto_Z_5_2_c.png|frame|Aufteilung der Impulsantwort in zwei Teilsysteme]]
+
*For&nbsp;  $H_2(f)$&nbsp; it holds with&nbsp; $\tau_1 = 1\hspace{0.05cm}\rm ms$:
 
 
*Die Übertragungsfunktion&nbsp; $H_1(f)$&nbsp; ist wie in der Teilaufgabe&nbsp; '''(2)'''&nbsp; berechnet.
 
*Für&nbsp;  $H_2(f)$&nbsp; gilt mit&nbsp; $\tau_1 = 1\hspace{0.05cm}\rm ms$:
 
 
:$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad  \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad  \Rightarrow \quad \left| {H_2 (f)} \right|^2  = 1.$$
 
:$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad  \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad  \Rightarrow \quad \left| {H_2 (f)} \right|^2  = 1.$$
  
*Das bedeutet: &nbsp; Durch die zusätzliche Laufzeit wird&nbsp; $\left| {H(f)} \right|^2$&nbsp; gegenüber der Teilaufgabe&nbsp; '''(2)'''&nbsp; nicht verändert.
+
*This means: &nbsp; Due to the additional delay time,&nbsp; $\left| {H(f)} \right|^2$&nbsp; is not changed compared to subtask&nbsp; '''(2)'''.&nbsp;  
* Bei der Frequenz&nbsp; $f = 0$&nbsp; gilt also weiterhin&nbsp; $\left| {H(f = 0)} \right|^2\hspace{0.15cm} \underline{  = 2.25}.$
+
* At the frequency $f = 0$:&nbsp; &nbsp; $\left| {H(f = 0)} \right|^2\hspace{0.15cm} \underline{  = 2.25}$&nbsp; is still valid.
  
  
  
 
+
'''(4)'''&nbsp; By comparing the drawn function&nbsp; $h(t) \star  h(-t)$&nbsp; with the result of subtask&nbsp; '''(2)''':&nbsp;  
'''(4)'''&nbsp; Durch Vergleich der gezeichneten Funktion&nbsp; $h(t) \star  h(-t)$&nbsp; mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man:
 
 
:$$C_0  = 1 + \alpha ^2  \hspace{0.15cm} \underline{= 1.25},
 
:$$C_0  = 1 + \alpha ^2  \hspace{0.15cm} \underline{= 1.25},
 
\hspace{0.5cm}C_3  = \alpha  \hspace{0.15cm} \underline{= 0.5},
 
\hspace{0.5cm}C_3  = \alpha  \hspace{0.15cm} \underline{= 0.5},
Line 112: Line 106:
  
  
 
+
'''(5)'''&nbsp; The power-spectral density of the output signal&nbsp; $y(t)$&nbsp; is limited to the range of&nbsp; $\pm B$&nbsp; and results in
'''(5)'''&nbsp; Das LDS des Ausgangssignals&nbsp; $y(t)$&nbsp; ist auf den Bereich von&nbsp; $\pm B$&nbsp; begrenzt und ergibt sich zu
 
 
:$${\it \Phi}_y(f)  = {N_0}/{2}  \cdot |H(f)|^2  = N_0/{2}  \cdot {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
 
:$${\it \Phi}_y(f)  = {N_0}/{2}  \cdot |H(f)|^2  = N_0/{2}  \cdot {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
  
*Unter Ausnutzung von Symmetrieeigenschaften erhält man somit für die Leistung:
+
*Taking advantage of symmetry properties,&nbsp; we thus obtain for the power:
 
:$$P_y  = N_0  \cdot \int_0^B {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
 
:$$P_y  = N_0  \cdot \int_0^B {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
  
*$B = 10 \hspace{0.08cm} \rm kHz$&nbsp; ist ein ganzzahliges Vielfaches der Frequenzperiode&nbsp; $f_0 = 1/\tau_2=  250 \hspace{0.08cm}\rm Hz$&nbsp; $($vgl. Lösung zur Teilaufgabe&nbsp; '''1'''$)$.
+
*$B = 10 \hspace{0.08cm} \rm kHz$&nbsp; is an integer multiple of the frequency period&nbsp; $f_0 = 1/\tau_2=  250 \hspace{0.08cm}\rm Hz$&nbsp; $($cf. solution to subtask&nbsp; '''1'''$)$.&nbsp; Therefore,&nbsp; the cosine function does not contribute to the integral,&nbsp; and we obtain:
*Deshalb trägt die Cosinus-Funktion nicht zum Integral bei, und man erhält:
 
 
:$$P_y  = N_0  \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$
 
:$$P_y  = N_0  \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 126: Line 118:
  
  
[[Category:Theory of Stochastic Signals: Exercises|^5.1 Stochastische Systemtheorie^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.1 Stochastic Systems Theory^]]

Latest revision as of 17:51, 10 February 2022

Two–way channel impulse responses  $h(t)$,  $h(t) * h( { - t} )$

From a transmission system it is known that following relationship exists between the input signal  $x(t)$  and the output signal  $y(t)$ :

$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$

The corresponding impulse response  $h(t)$  is sketched above.

In the sketch below,  the function

$$h(t) * h( { - t} )\hspace{0.25cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.25cm}\left| {H(f)} \right|^2$$

is shown,  where the parameters  $C_0$,  $C_3$  and  $\tau_3$  depend on  $\alpha$,  $\tau_1$  and  $\tau_2$   ⇒   see subtask  (4).

Let the input signal  $x(t)$  be band-limited white noise

  • with power density  $N_0 = 10^{-6} \hspace{0.08cm} \rm W/Hz$
  • and bandwidth  $B = 10 \hspace{0.08cm} \rm kHz$,


from which the power  $P_x = 10 \hspace{0.08cm} \rm mW$  can be calculated.



Notes:

  • The exercise belongs to the chapter  Stochastic System Theory.
  • Use always the value  $\alpha = 0.5$  for numerical calculations.
  • For the subtasks  (1)  and  (2),  let  $\tau_1 = 0$  and  $\tau_2 = 4\hspace{0.08cm}\rm ms$  be valid.
  • For later tasks,  assume  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$.



Questions

1

Calculate the frequency response  $H(f)$  for  $\tau_1 = 0$  and $\tau_2 = 4\hspace{0.08cm}\rm ms$.  Show that  $H(f)$  is a periodic function with  $f_0$.    What is the value of $f_0$?

$f_0 \ = \ $

$\ \rm kHz$

2

What is the size of  $|H(f)|^2$  with  $\tau_1 = 0$,  $\tau_2 = 4\hspace{0.08cm}\rm ms$  and  $\alpha = 0.5$?  Enter the value at $f = 0$. 

$|H(f = 0)|^2 \ = \ $

3

How does  $|H(f)|^2$  change with  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$?  Let the attenuation constant still be  $\alpha = 0.5$.  Enter the value at $f = 0$. 

$|H(f = 0)|^2 \ = \ $

4

Let  $\alpha = 0.5$,  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$ still hold.  Which values result for the function parameters of  $h(t) \star h(-t)$  according to the diagram?

$C_0 \ = \ $

$C_3 \ = \ $

$\tau_3 \ = \ $

$\ \rm ms$

5

What is the power of the output signal  $y(t)$?

$P_y \ = \ $

$\ \rm mW$


Solution

(1)  $H(f)$  is the Fourier transform to  $h(t)$.

  • Using the shifting theorem,  this is with   $\tau_1 = 0$:
$$H(f) = 1 + \alpha \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 } = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  • If  $H(f)$  is periodic with $f_0$,  then for all integer values of  $i$  must hold:  
$$H( {f + i \cdot f_0 } ) = H( f ).$$
  • With  $f_0 = 1/\tau_2\hspace{0.15cm} \underline{= 0.25 \hspace{0.05cm}\rm kHz}$  this condition is satisfied.
$$H( {f + i \cdot f_0 } ) = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 + i{\rm{2\pi }}f_0 \tau _2 } ) = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$


(2)  The magnitude square is the sum of squared real part and squared imaginary part:

$$\left| {H( f )} \right|^2 = \left( {1 + \alpha \cdot \cos ( A )} \right)^2 + \left( {\alpha \cdot \sin ( A )} \right)^2 .$$
  • Here the angle argument is abbreviated as  $A = 2\pi f \tau$.    After multiplying,  we get because of  $\cos^2(A) + \sin^2(A) = 1$:
$$\left| {H(f)} \right|^2 = 1 + \alpha ^2 + 2\alpha \cdot \cos ( A ).$$
  • At the frequency $f = 0$  $($and thus   $A = 0)$,  the result with  $\alpha = 0.5$  is:
$$\left| {H( {f = 0} )} \right|^2 = \left( {1 + \alpha } \right)^2 = 1.5^2\hspace{0.15cm} \underline{ = 2.25}.$$


(3)  Now the transmission system can be composed of two subsystems  (see diagram):

Splitting the impulse response into two subsystems
  • The transfer function  $H_1(f)$  is calculated as in subtask  (2)
  • For  $H_2(f)$  it holds with  $\tau_1 = 1\hspace{0.05cm}\rm ms$:
$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad \Rightarrow \quad \left| {H_2 (f)} \right|^2 = 1.$$
  • This means:   Due to the additional delay time,  $\left| {H(f)} \right|^2$  is not changed compared to subtask  (2)
  • At the frequency $f = 0$:    $\left| {H(f = 0)} \right|^2\hspace{0.15cm} \underline{ = 2.25}$  is still valid.


(4)  By comparing the drawn function  $h(t) \star h(-t)$  with the result of subtask  (2)

$$C_0 = 1 + \alpha ^2 \hspace{0.15cm} \underline{= 1.25}, \hspace{0.5cm}C_3 = \alpha \hspace{0.15cm} \underline{= 0.5}, \hspace{0.5cm}\tau _3 = \tau _2 - \tau _1 \hspace{0.15cm} \underline{= 4\;{\rm{ms}}}.$$


(5)  The power-spectral density of the output signal  $y(t)$  is limited to the range of  $\pm B$  and results in

$${\it \Phi}_y(f) = {N_0}/{2} \cdot |H(f)|^2 = N_0/{2} \cdot {\left( {1 + \alpha ^2 + 2\alpha \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
  • Taking advantage of symmetry properties,  we thus obtain for the power:
$$P_y = N_0 \cdot \int_0^B {\left( {1 + \alpha ^2 + 2\alpha \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
  • $B = 10 \hspace{0.08cm} \rm kHz$  is an integer multiple of the frequency period  $f_0 = 1/\tau_2= 250 \hspace{0.08cm}\rm Hz$  $($cf. solution to subtask  1$)$.  Therefore,  the cosine function does not contribute to the integral,  and we obtain:
$$P_y = N_0 \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$