Difference between revisions of "Aufgaben:Exercise 5.2Z: Two-Way Channel"

From LNTwww
m (Nabil verschob die Seite Zusatzaufgaben:5.2 Zweiwegekanal nach 5.2Z Zweiwegekanal)
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Stochastische Systemtheorie
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Stochastic_System_Theory
 
}}
 
}}
  
[[File:P_ID517__Sto_Z_5_2.png|right|]]
+
[[File:P_ID517__Sto_Z_5_2.png|right|frame|Two–way channel impulse responses  $h(t)$,  $h(t) * h( { - t} )$]]
:Von einem Übertragungssystem ist bekannt, dass zwischen dem Eingangssignal <i>x</i>(<i>t</i>) und dem  Ausgangssignal <i>y</i>(<i>t</i>) der folgende Zusammenhang besteht:
+
From a transmission system it is known  that following relationship exists between the input signal&nbsp; $x(t)$&nbsp; and the output signal&nbsp; $y(t)$&nbsp;:
 
:$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$
 
:$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$
  
:Die dazugehörige Impulsantwort <i>h</i>(<i>t</i>) ist rechts skizziert.
+
The corresponding impulse response&nbsp; $h(t)$&nbsp; is sketched above.
  
:Verwenden Sie für die numerischen Berechnungen stets den Wert <i>&alpha;</i> = 0.5. Für die Teilaufgaben (1) und (2) gelte zudem <i>&tau;</i><sub>1</sub> = 0 und <i>&tau;</i><sub>2</sub> = 4 ms. Für die späteren Aufgabenteile soll von <i>&tau;</i><sub>1</sub> = 1 ms und <i>&tau;</i><sub>2</sub> = 5 ms ausgegangen werden.
+
In the sketch below,&nbsp; the function
 +
:$$h(t) * h( { - t} )\hspace{0.25cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.25cm}\left| {H(f)} \right|^2$$
  
:In der unteren Skizze ist die Funktion
+
is shown,&nbsp; where the parameters&nbsp; $C_0$,&nbsp; $C_3$&nbsp; and&nbsp; $\tau_3$&nbsp; depend on&nbsp; $\alpha$,&nbsp; $\tau_1$&nbsp; and&nbsp; $\tau_2$&nbsp;&nbsp; &rArr; &nbsp; see subtask&nbsp; '''(4)'''.
:$$h(t) * h( { - t} )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\left| {H(f)} \right|^2$$
 
  
:dargestellt, wobei die Parameter <i>C</i><sub>0</sub>, <i>C</i><sub>3</sub> und <i>&tau;</i><sub>3</sub> von <i>&alpha;</i>, <i>&tau;</i><sub>1</sub> und <i>&tau;</i><sub>2</sub> abhängen (siehe Teilaufgabe 4).
+
Let the input signal&nbsp; $x(t)$&nbsp; be band-limited white noise
 +
*with power density&nbsp; $N_0 = 10^{-6} \hspace{0.08cm} \rm W/Hz$
 +
*and bandwidth&nbsp; $B = 10 \hspace{0.08cm} \rm kHz$,
  
:Das Eingangssignal <i>x</i>(<i>t</i>) sei bandbegrenztes weißes Rauschen mit der Leistungsdichte <i>N</i><sub>0</sub> = 1 &mu;W und der Bandbreite <i>B</i> = 10 kHz, woraus sich die Leistung <i>P<sub>x</sub></i> = 10 mW berechnen lässt.
 
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 5.1.
+
from which the power&nbsp;  $P_x = 10 \hspace{0.08cm} \rm mW$&nbsp; can be calculated.
  
  
===Fragebogen===
+
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory| Stochastic System Theory]].
 +
*Use always the value&nbsp; $\alpha = 0.5$&nbsp; for numerical calculations.
 +
*For the subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)''',&nbsp; let&nbsp; $\tau_1 = 0$ &nbsp;and&nbsp; $\tau_2 = 4\hspace{0.08cm}\rm ms$&nbsp; be valid.
 +
*For later tasks,&nbsp; assume&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$ &nbsp;and&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang <i>H</i>(<i>f</i>) für <i>&tau;</i><sub>1</sub> = 0 und <i>&tau;</i><sub>2</sub> = 4 ms. Zeigen Sie, dass <i>H</i>(<i>f</i>) eine mit <i>f</i><sub>0</sub> periodische Funktion ist. Wie groß ist <i>f</i><sub>0</sub>?
+
{Calculate the frequency response&nbsp; $H(f)$&nbsp; for&nbsp; $\tau_1 = 0$&nbsp; and $\tau_2 = 4\hspace{0.08cm}\rm ms$.&nbsp; Show that&nbsp; $H(f)$&nbsp; is a periodic function with&nbsp; $f_0$.&nbsp; &nbsp; What is the value of $f_0$?
 
|type="{}"}
 
|type="{}"}
$f_0$ = { 0.25 3% } $kHz$
+
$f_0 \ = \ $ { 0.25 3% } $\ \rm kHz$
  
  
{Wie groß ist |<i>H</i>(<i>f</i> = 0)|<sup>2</sup> mit <i>&tau;</i><sub>1</sub> = 0, <i>&tau;</i><sub>2</sub> = 4 ms, <i>&alpha;</i> = 0.5?
+
{What is the size of&nbsp; $|H(f)|^2$&nbsp; with&nbsp; $\tau_1 = 0$,&nbsp; $\tau_2 = 4\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\alpha = 0.5$?&nbsp; Enter the value at $f = 0$.&nbsp;
 
|type="{}"}
 
|type="{}"}
$|H(f = 0)|^2$ = { 2.25 3% }
+
$|H(f = 0)|^2 \ = \ $ { 2.25 3% }
  
  
{Wie verändert sich die Funktion |<i>H</i>(<i>f</i>)|<sup>2</sup> mit <i>&tau;</i><sub>1</sub> = 1 ms und <i>&tau;</i><sub>2</sub> = 5 ms? Die Dämpfungskonstante <i>&alpha;</i> sei weiterhin 0.5. Geben Sie den Wert bei <i>f</i> = 0 ein.
+
{How does&nbsp;  $|H(f)|^2$&nbsp; change with&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$?&nbsp; Let the attenuation constant still be&nbsp; $\alpha = 0.5$.&nbsp; Enter the value at $f = 0$.&nbsp;
 
|type="{}"}
 
|type="{}"}
$|H(f = 0)|^2$ = { 0.3 }
+
$|H(f = 0)|^2 \ =  \ $ { 2.25 }
  
  
{Es gelte weiterhin <i>&alpha;</i> = 0.5, <i>&tau;</i><sub>1</sub> = 1 ms und <i>&tau;</i><sub>2</sub> = 5 ms. Welche Werte ergeben sich für die Funktionsparameter von <i>h</i>(<i>t</i>) &#8727; <i>h</i>(&ndash;<i>t</i>) entsprechend der Skizze?
+
{Let&nbsp; $\alpha = 0.5$,&nbsp; $\tau_1 = 1\hspace{0.08cm}\rm ms$&nbsp; and&nbsp; $\tau_2 = 5\hspace{0.08cm}\rm ms$ still hold.&nbsp; Which values result for the function parameters of&nbsp; $h(t) \star  h(-t)$&nbsp; according to the diagram?
 
|type="{}"}
 
|type="{}"}
$C_0$ = { 1.25 3% }
+
$C_0 \ =  \ ${ 1.25 3% }
$C_3$ = { 0.5 3% }
+
$C_3 \ =  \ $ { 0.5 3% }
$\tau_3$ = { 4 3% } $ms$
+
$\tau_3 \ =  \ $ { 4 3% } $\ \rm ms$
  
  
{Wie groß ist die Leistung des Ausgangssignals <i>y</i>(<i>t</i>)?
+
{What is the power of the output signal&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
$P_y$ = { 12.5 3% } $mW$
+
$P_y \ =  \ $ { 12.5 3% } $\ \rm mW$
  
  
Line 54: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;<i>H</i>(<i>f</i>) ist die Fouriertransformierte zu <i>h</i>(<i>t</i>). Mit dem Verschiebungssatz lautet diese (<i>&tau;</i><sub>1</sub> = 0):
+
'''(1)'''&nbsp; $H(f)$&nbsp; is the Fourier transform to&nbsp; $h(t)$.  
 +
*Using the shifting theorem,&nbsp; this is with &nbsp; $\tau_1 = 0$:
 
:$$H(f) = 1 + \alpha  \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 }  = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
 
:$$H(f) = 1 + \alpha  \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 }  = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  
:Falls <i>H</i>(<i>f</i>) periodisch mit <i>f</i><sub>0</sub> ist, muss für alle ganzzahligen Werte von <i>i</i> gelten:
+
*If&nbsp; $H(f)$&nbsp; is periodic with $f_0$,&nbsp; then for all integer values of&nbsp; $i$&nbsp; must hold: &nbsp;
 
:$$H( {f + i \cdot f_0 } ) = H( f ).$$
 
:$$H( {f + i \cdot f_0 } ) = H( f ).$$
 +
*With&nbsp; $f_0 = 1/\tau_2\hspace{0.15cm} \underline{=  0.25 \hspace{0.05cm}\rm kHz}$&nbsp; this condition is satisfied.
 +
:$$H( {f + i \cdot f_0 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  
:Mit <i>f</i><sub>0</sub> = 1/<i>&tau;</i><sub>2</sub> <u>= 0.25 kHz</u> ist diese Bedingung erfüllt.
 
:$$H( {f + i \cdot f_0 } ) = 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2  + i{\rm{2\pi }}f_0 \tau _2 } ) \\= 1 + \alpha  \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha  \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
 
  
:<b>2.</b>&nbsp;&nbsp;Das Betragsquadrat ist die Summe von quadriertem Realteil und quadriertem Imaginärteil:
+
'''(2)'''&nbsp; The magnitude square is the sum of squared real part and squared imaginary part:
 
:$$\left| {H( f )} \right|^2  = \left( {1 + \alpha  \cdot \cos ( A )} \right)^2  + \left( {\alpha  \cdot \sin ( A )} \right)^2 .$$
 
:$$\left| {H( f )} \right|^2  = \left( {1 + \alpha  \cdot \cos ( A )} \right)^2  + \left( {\alpha  \cdot \sin ( A )} \right)^2 .$$
  
:Hierbei ist das Argument der Winkelfunktionen mit <i>A</i> = 2&pi;<i>f&tau;</i><sub>2</sub> abgekürzt. Nach Ausmultiplizieren unter Berücksichtigung von cos<sup>2</sup>(<i>A</i>) + sin<sup>2</sup>(<i>A</i>) = 1 erhält man:
+
*Here the angle argument is abbreviated as&nbsp; $A = 2\pi f \tau$.&nbsp; &nbsp; After multiplying,&nbsp; we get because of&nbsp; $\cos^2(A) + \sin^2(A) = 1$:
 
:$$\left| {H(f)} \right|^2  = 1 + \alpha ^2  + 2\alpha  \cdot \cos ( A ).$$
 
:$$\left| {H(f)} \right|^2  = 1 + \alpha ^2  + 2\alpha  \cdot \cos ( A ).$$
  
:Bei der Frequenz <i>f</i> = 0 (und somit <i>A</i> = 0) ergibt sich allgemein bzw. mit <i>&alpha;</i> = 0.5:
+
*At the frequency $f = 0$&nbsp; $($and thus &nbsp; $A = 0)$,&nbsp; the result with&nbsp; $\alpha = 0.5$&nbsp; is:
 
:$$\left| {H( {f = 0} )} \right|^2  = \left( {1 + \alpha } \right)^2  = 1.5^2\hspace{0.15cm} \underline{  = 2.25}.$$
 
:$$\left| {H( {f = 0} )} \right|^2  = \left( {1 + \alpha } \right)^2  = 1.5^2\hspace{0.15cm} \underline{  = 2.25}.$$
  
:<b>3.</b>&nbsp;&nbsp;Nun lässt sich das Übertragungssystem aus zwei Teilsystemen zusammensetzen (siehe Skizze):
 
[[File:P_ID551__Sto_Z_5_2_c.png|center|]]
 
  
:Die Übertragungsfunktion <i>H</i><sub>1</sub>(<i>f</i>) ist wie unter b) berechnet. Für <i>H</i><sub>2</sub>(<i>f</i>) gilt mit <i>&tau;</i><sub>1</sub> = 1 ms:
+
'''(3)'''&nbsp; Now the transmission system can be composed of two subsystems&nbsp; (see diagram):
 +
[[File:P_ID551__Sto_Z_5_2_c.png|frame|Splitting the impulse response into two subsystems]]
 +
 
 +
*The transfer function&nbsp; $H_1(f)$&nbsp; is calculated as in subtask&nbsp; '''(2)'''.&nbsp;
 +
*For&nbsp; $H_2(f)$&nbsp; it holds with&nbsp; $\tau_1 = 1\hspace{0.05cm}\rm ms$:
 
:$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad  \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad  \Rightarrow \quad \left| {H_2 (f)} \right|^2  = 1.$$
 
:$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad  \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad  \Rightarrow \quad \left| {H_2 (f)} \right|^2  = 1.$$
  
:Das bedeutet: Durch die zusätzliche Laufzeit wird |<i>H</i>(<i>f</i>)|<sup>2</sup> gegenüber der Teilaufgabe b) nicht verändert. Bei der Frequenz <i>f</i> = 0 gilt also weiterhin |<i>H</i>(<i>f</i> = 0)|<sup>2</sup> <u>= 2.25</u>.
+
*This means: &nbsp; Due to the additional delay time,&nbsp; $\left| {H(f)} \right|^2$&nbsp; is not changed compared to subtask&nbsp; '''(2)'''.&nbsp;
 +
* At the frequency $f = 0$:&nbsp; &nbsp; $\left| {H(f = 0)} \right|^2\hspace{0.15cm} \underline{  = 2.25}$&nbsp; is still valid.
 +
 
 +
 
  
:<b>4.</b>&nbsp;&nbsp;Durch Vergleich der gezeichneten Funktion <i>h</i>(<i>t</i>) &#8727; <i>h</i>(&ndash;<i>t</i>) mit dem Ergebnis von b) erhält man:
+
'''(4)'''&nbsp; By comparing the drawn function&nbsp; $h(t) \star  h(-t)$&nbsp; with the result of subtask&nbsp; '''(2)''':&nbsp;
 
:$$C_0  = 1 + \alpha ^2  \hspace{0.15cm} \underline{= 1.25},
 
:$$C_0  = 1 + \alpha ^2  \hspace{0.15cm} \underline{= 1.25},
 
\hspace{0.5cm}C_3  = \alpha  \hspace{0.15cm} \underline{= 0.5},
 
\hspace{0.5cm}C_3  = \alpha  \hspace{0.15cm} \underline{= 0.5},
 
\hspace{0.5cm}\tau _3  = \tau _2  - \tau _1  \hspace{0.15cm} \underline{= 4\;{\rm{ms}}}.$$
 
\hspace{0.5cm}\tau _3  = \tau _2  - \tau _1  \hspace{0.15cm} \underline{= 4\;{\rm{ms}}}.$$
  
:<b>5.</b>&nbsp;&nbsp;Das LDS des Ausgangssignals <i>y</i>(<i>t</i>) ist auf den Bereich von &plusmn;<i>B</i> begrenzt und ergibt sich zu
+
 
 +
'''(5)'''&nbsp; The power-spectral density of the output signal&nbsp; $y(t)$&nbsp; is limited to the range of&nbsp; $\pm B$&nbsp; and results in
 
:$${\it \Phi}_y(f)  = {N_0}/{2}  \cdot |H(f)|^2  = N_0/{2}  \cdot {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
 
:$${\it \Phi}_y(f)  = {N_0}/{2}  \cdot |H(f)|^2  = N_0/{2}  \cdot {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
  
:Unter Ausnutzung von Symmetrieeigenschaften erhält man somit für die Leistung:
+
*Taking advantage of symmetry properties,&nbsp; we thus obtain for the power:
 
:$$P_y  = N_0  \cdot \int_0^B {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
 
:$$P_y  = N_0  \cdot \int_0^B {\left( {1 + \alpha ^2  + 2\alpha  \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
  
:Da <i>B</i> = 10 kHz ein ganzzahliges Vielfaches der Frequenzperiode <i>f</i><sub>0</sub> = 1/<i>&tau;</i><sub>3</sub> = 250 Hz ist (vgl. Lösung zu Teilaufgabe 1), trägt die Cosinus-Funktion nicht zum Integral bei, und man erhält:
+
*$B = 10 \hspace{0.08cm} \rm kHz$&nbsp; is an integer multiple of the frequency period&nbsp; $f_0 = 1/\tau_2= 250 \hspace{0.08cm}\rm Hz$&nbsp; $($cf. solution to subtask&nbsp; '''1'''$)$.&nbsp; Therefore,&nbsp; the cosine function does not contribute to the integral,&nbsp; and we obtain:
 
:$$P_y  = N_0  \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$
 
:$$P_y  = N_0  \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 99: Line 118:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^5.1 Stochastische Systemtheorie^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.1 Stochastic Systems Theory^]]

Latest revision as of 17:51, 10 February 2022

Two–way channel impulse responses  $h(t)$,  $h(t) * h( { - t} )$

From a transmission system it is known that following relationship exists between the input signal  $x(t)$  and the output signal  $y(t)$ :

$$y(t) = x( {t - \tau _1 } ) + \alpha \cdot x( {t - \tau _2 } ).$$

The corresponding impulse response  $h(t)$  is sketched above.

In the sketch below,  the function

$$h(t) * h( { - t} )\hspace{0.25cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.25cm}\left| {H(f)} \right|^2$$

is shown,  where the parameters  $C_0$,  $C_3$  and  $\tau_3$  depend on  $\alpha$,  $\tau_1$  and  $\tau_2$   ⇒   see subtask  (4).

Let the input signal  $x(t)$  be band-limited white noise

  • with power density  $N_0 = 10^{-6} \hspace{0.08cm} \rm W/Hz$
  • and bandwidth  $B = 10 \hspace{0.08cm} \rm kHz$,


from which the power  $P_x = 10 \hspace{0.08cm} \rm mW$  can be calculated.



Notes:

  • The exercise belongs to the chapter  Stochastic System Theory.
  • Use always the value  $\alpha = 0.5$  for numerical calculations.
  • For the subtasks  (1)  and  (2),  let  $\tau_1 = 0$  and  $\tau_2 = 4\hspace{0.08cm}\rm ms$  be valid.
  • For later tasks,  assume  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$.



Questions

1

Calculate the frequency response  $H(f)$  for  $\tau_1 = 0$  and $\tau_2 = 4\hspace{0.08cm}\rm ms$.  Show that  $H(f)$  is a periodic function with  $f_0$.    What is the value of $f_0$?

$f_0 \ = \ $

$\ \rm kHz$

2

What is the size of  $|H(f)|^2$  with  $\tau_1 = 0$,  $\tau_2 = 4\hspace{0.08cm}\rm ms$  and  $\alpha = 0.5$?  Enter the value at $f = 0$. 

$|H(f = 0)|^2 \ = \ $

3

How does  $|H(f)|^2$  change with  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$?  Let the attenuation constant still be  $\alpha = 0.5$.  Enter the value at $f = 0$. 

$|H(f = 0)|^2 \ = \ $

4

Let  $\alpha = 0.5$,  $\tau_1 = 1\hspace{0.08cm}\rm ms$  and  $\tau_2 = 5\hspace{0.08cm}\rm ms$ still hold.  Which values result for the function parameters of  $h(t) \star h(-t)$  according to the diagram?

$C_0 \ = \ $

$C_3 \ = \ $

$\tau_3 \ = \ $

$\ \rm ms$

5

What is the power of the output signal  $y(t)$?

$P_y \ = \ $

$\ \rm mW$


Solution

(1)  $H(f)$  is the Fourier transform to  $h(t)$.

  • Using the shifting theorem,  this is with   $\tau_1 = 0$:
$$H(f) = 1 + \alpha \cdot {\rm{e}}^{ - {\rm{j2\pi }}f\tau _2 } = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$
  • If  $H(f)$  is periodic with $f_0$,  then for all integer values of  $i$  must hold:  
$$H( {f + i \cdot f_0 } ) = H( f ).$$
  • With  $f_0 = 1/\tau_2\hspace{0.15cm} \underline{= 0.25 \hspace{0.05cm}\rm kHz}$  this condition is satisfied.
$$H( {f + i \cdot f_0 } ) = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 + i{\rm{2\pi }}f_0 \tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 + i{\rm{2\pi }}f_0 \tau _2 } ) = 1 + \alpha \cdot \cos ( {{\rm{2\pi }}f\tau _2 } ) - {\rm{j}} \cdot \alpha \cdot \sin ( {{\rm{2\pi }}f\tau _2 } ).$$


(2)  The magnitude square is the sum of squared real part and squared imaginary part:

$$\left| {H( f )} \right|^2 = \left( {1 + \alpha \cdot \cos ( A )} \right)^2 + \left( {\alpha \cdot \sin ( A )} \right)^2 .$$
  • Here the angle argument is abbreviated as  $A = 2\pi f \tau$.    After multiplying,  we get because of  $\cos^2(A) + \sin^2(A) = 1$:
$$\left| {H(f)} \right|^2 = 1 + \alpha ^2 + 2\alpha \cdot \cos ( A ).$$
  • At the frequency $f = 0$  $($and thus   $A = 0)$,  the result with  $\alpha = 0.5$  is:
$$\left| {H( {f = 0} )} \right|^2 = \left( {1 + \alpha } \right)^2 = 1.5^2\hspace{0.15cm} \underline{ = 2.25}.$$


(3)  Now the transmission system can be composed of two subsystems  (see diagram):

Splitting the impulse response into two subsystems
  • The transfer function  $H_1(f)$  is calculated as in subtask  (2)
  • For  $H_2(f)$  it holds with  $\tau_1 = 1\hspace{0.05cm}\rm ms$:
$$H_2 (f) = {\rm{e}}^{ - {\rm{j2\pi }}f\tau _1 } \quad \Rightarrow \quad \left| {H_2 (f)} \right| = 1\quad \Rightarrow \quad \left| {H_2 (f)} \right|^2 = 1.$$
  • This means:   Due to the additional delay time,  $\left| {H(f)} \right|^2$  is not changed compared to subtask  (2)
  • At the frequency $f = 0$:    $\left| {H(f = 0)} \right|^2\hspace{0.15cm} \underline{ = 2.25}$  is still valid.


(4)  By comparing the drawn function  $h(t) \star h(-t)$  with the result of subtask  (2)

$$C_0 = 1 + \alpha ^2 \hspace{0.15cm} \underline{= 1.25}, \hspace{0.5cm}C_3 = \alpha \hspace{0.15cm} \underline{= 0.5}, \hspace{0.5cm}\tau _3 = \tau _2 - \tau _1 \hspace{0.15cm} \underline{= 4\;{\rm{ms}}}.$$


(5)  The power-spectral density of the output signal  $y(t)$  is limited to the range of  $\pm B$  and results in

$${\it \Phi}_y(f) = {N_0}/{2} \cdot |H(f)|^2 = N_0/{2} \cdot {\left( {1 + \alpha ^2 + 2\alpha \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}.$$
  • Taking advantage of symmetry properties,  we thus obtain for the power:
$$P_y = N_0 \cdot \int_0^B {\left( {1 + \alpha ^2 + 2\alpha \cdot \cos ( {2{\rm{\pi }}f\tau _3 } )} \right)}\hspace{0.1cm} {\rm{d}}f.$$
  • $B = 10 \hspace{0.08cm} \rm kHz$  is an integer multiple of the frequency period  $f_0 = 1/\tau_2= 250 \hspace{0.08cm}\rm Hz$  $($cf. solution to subtask  1$)$.  Therefore,  the cosine function does not contribute to the integral,  and we obtain:
$$P_y = N_0 \cdot B \cdot \left( {1 + \alpha ^2 } \right) = 1.25 \cdot P_x \hspace{0.15cm} \underline{ = 12.5\;{\rm{mW}}}.$$