Difference between revisions of "Aufgaben:Exercise 5.3: AWGN and BSC Model"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:EN_Dig_A_5_3.png|right|frame|AWGN channel and BSC model]]
+
[[File:EN_Dig_A_5_3.png|right|frame|AWGN and BSC model]]
The graphic above shows the analog channel model of a digital transmission system, where the additive noise signal  $n(t)$  with the (two-sided) noise power density  $N_0/2$  is effective. This is AWGN noise. The variance of the noise component before the decision (after the matched filter) is then
+
The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  $n(t)$  with the  $($two-sided$)$  noise power density  $N_0/2$  is effective.  This is AWGN noise.  The variance of the noise component before the decision  $($after the matched filter$)$  is then
 
:$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
 
:$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
  
 
Further, let hold:
 
Further, let hold:
* No intersymbol interference occurs. If the symbol  $q_{\nu} = \mathbf{H}$  was sent, the useful component of the detection signal is equal to  $+s_0$, while for  $q_{\nu} = \mathbf{L}$,  it is equal to  $-s_0$.
+
* No intersymbol interference occurs.  If the symbol  $q_{\nu} = \mathbf{H}$  was sent,  the useful component of the detection signal is equal to  $+s_0$,  while for  $q_{\nu} = \mathbf{L}$,  it is equal to  $-s_0$.
* The threshold decision takes into account a threshold drift, that is, the threshold&nbsp; $E$&nbsp; may well deviate from the optimal value&nbsp; $E = 0$.&nbsp; The <i>decision rule</i> is:
+
 
 +
* The threshold decision takes into account a threshold drift,&nbsp; that is,&nbsp; the threshold&nbsp; $E$&nbsp; may well deviate from the optimal value&nbsp; $E = 0$.&nbsp; The&nbsp; "decision rule"&nbsp; is:
 
:$$\upsilon_\nu =
 
:$$\upsilon_\nu =
 
  \left\{ \begin{array}{c} \mathbf{H} \\
 
  \left\{ \begin{array}{c} \mathbf{H} \\
Line 17: Line 18:
 
:$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$
 
:$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$
  
The bottom graph shows a digital channel model characterized by the four transition probabilities&nbsp; $p_1,&nbsp; p_2,&nbsp; p_3$&nbsp; and&nbsp; $p_4$.&nbsp; This is to be fitted to the analog channel model.
+
&rArr; &nbsp; The bottom graph shows a digital channel model characterized by the four transition probabilities&nbsp; $p_1, &nbsp; p_2, &nbsp; p_3$ &nbsp; and &nbsp; $p_4$.&nbsp; This is to be fitted to the analog channel model.
  
  
Line 23: Line 24:
  
  
 
+
<u>Notes:</u>
 
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel"]].
''Notes:''
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel (BSC)"]].  
 
 
* Numerical values of the Q&ndash;function can be determined with the interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]].&nbsp;  
 
* Numerical values of the Q&ndash;function can be determined with the interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]].&nbsp;  
 
   
 
   
Line 38: Line 38:
 
$s_0/\sigma\ = \ ${ 2.32 3% }
 
$s_0/\sigma\ = \ ${ 2.32 3% }
  
{For the threshold, let&nbsp; $E = 0$. Is the digital transmission system at hand describable by the BSC model, assuming that
+
{For the threshold, let&nbsp; $E = 0$.&nbsp; Is the digital transmission system at hand describable by the BSC model,&nbsp; assuming that
 
|type="[]"}
 
|type="[]"}
 
+ the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
 
+ the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
+ the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than $\mathbf{H}$?
+
+ the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than&nbsp; $\mathbf{H}$?
  
 
{Calculate the transition probabilities for&nbsp; $E = +s_0/4$.
 
{Calculate the transition probabilities for&nbsp; $E = +s_0/4$.
Line 50: Line 50:
 
$p_4 \ = \ $ { 0.998 3% }
 
$p_4 \ = \ $ { 0.998 3% }
  
{Now let&nbsp; $E = +s_0/4$. Is the present digital transmission system describable by the BSC model under the condition that
+
{Now let&nbsp; $E = +s_0/4$.&nbsp; Is the present digital transmission system describable by the BSC model under the condition that
 
|type="[]"}
 
|type="[]"}
 
- the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
 
- the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
 
- the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than&nbsp; $\mathbf{H}$?
 
- the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than&nbsp; $\mathbf{H}$?
  
{Let&nbsp; $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$&nbsp; and&nbsp; $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$. Which of the following statements is then true for the mean error probability&nbsp; $p_{\rm M}$?&nbsp;  
+
{Let&nbsp; $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$&nbsp; and&nbsp; $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$.&nbsp; Which of the following statements are then true for the mean error probability&nbsp; $p_{\rm M}$?&nbsp;  
 
|type="[]"}
 
|type="[]"}
 
+ $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is independent of&nbsp; $p_{\rm L}$&nbsp; and &nbsp;$p_{\rm H}$.
 
+ $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is independent of&nbsp; $p_{\rm L}$&nbsp; and &nbsp;$p_{\rm H}$.
 
- $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is smallest for&nbsp; $p_{\rm L} = p_{\rm H}$.&nbsp;  
 
- $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is smallest for&nbsp; $p_{\rm L} = p_{\rm H}$.&nbsp;  
+ For&nbsp; $p_{\rm L} = 0.9$,&nbsp; $p_{\rm H} = 0.1$&nbsp; and&nbsp; $E = +s_0/4$&nbsp; is&nbsp; $p_{\rm M} < 1\%$.
+
+ For&nbsp; $p_{\rm L} = 0.9$,&nbsp; $p_{\rm H} = 0.1$&nbsp; and&nbsp; $E = +s_0/4$&nbsp; &nbsp; &rArr; &nbsp; $p_{\rm M} < 1\%$.
 
</quiz>
 
</quiz>
  

Revision as of 15:18, 5 September 2022

AWGN and BSC model

The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  $n(t)$  with the  $($two-sided$)$  noise power density  $N_0/2$  is effective.  This is AWGN noise.  The variance of the noise component before the decision  $($after the matched filter$)$  is then

$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$

Further, let hold:

  • No intersymbol interference occurs.  If the symbol  $q_{\nu} = \mathbf{H}$  was sent,  the useful component of the detection signal is equal to  $+s_0$,  while for  $q_{\nu} = \mathbf{L}$,  it is equal to  $-s_0$.
  • The threshold decision takes into account a threshold drift,  that is,  the threshold  $E$  may well deviate from the optimal value  $E = 0$.  The  "decision rule"  is:
$$\upsilon_\nu = \left\{ \begin{array}{c} \mathbf{H} \\ \mathbf{L} \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.15cm}d (\nu \cdot T) > E \hspace{0.05cm}, \\ {\rm if} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
  • With the threshold value  $E = 0$,  the mean error probability is given by
$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$

⇒   The bottom graph shows a digital channel model characterized by the four transition probabilities  $p_1,   p_2,   p_3$   and   $p_4$.  This is to be fitted to the analog channel model.



Notes:



Questions

1

Which quotient  $s_0/\sigma$  is the basis of this exercise?

$s_0/\sigma\ = \ $

2

For the threshold, let  $E = 0$.  Is the digital transmission system at hand describable by the BSC model,  assuming that

the source symbols  $\mathbf{L}$  and  $\mathbf{H}$  are equally probable,
the source symbol  $\mathbf{L}$  occurs significantly more frequently than  $\mathbf{H}$?

3

Calculate the transition probabilities for  $E = +s_0/4$.

$p_1 \ = \ $

$p_2 \ = \ $

$p_3 \ = \ $

$p_4 \ = \ $

4

Now let  $E = +s_0/4$.  Is the present digital transmission system describable by the BSC model under the condition that

the source symbols  $\mathbf{L}$  and  $\mathbf{H}$  are equally probable,
the source symbol  $\mathbf{L}$  occurs significantly more frequently than  $\mathbf{H}$?

5

Let  $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$  and  $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$.  Which of the following statements are then true for the mean error probability  $p_{\rm M}$? 

$p_{\rm M}$  in the BSC model  $($valid for  $E = 0)$  is independent of  $p_{\rm L}$  and  $p_{\rm H}$.
$p_{\rm M}$  in the BSC model  $($valid for  $E = 0)$  is smallest for  $p_{\rm L} = p_{\rm H}$. 
For  $p_{\rm L} = 0.9$,  $p_{\rm H} = 0.1$  and  $E = +s_0/4$    ⇒   $p_{\rm M} < 1\%$.


Solution

(1)  The average error probability is $p_{\rm M} = {\rm Q}(s_0/\sigma) = 0.01$.

  • From this it follows for the quotient of the detection useful sample value and the detection noise rms value:
$${s_0}/{\sigma}= {\rm Q}^{-1} \left ( 0.01 \right ) \hspace{0.15cm}\underline {\approx 2.32}\hspace{0.05cm}.$$


(2)  With $E = 0$, the probabilities of the given digital channel model are given by:

$$p_2 = p_3 = p = 0.01 \hspace{0.05cm}, \hspace{0.2cm}p_1 = p_4 = 1-p = 0.99\hspace{0.05cm}.$$
  • A comparison with the theory part shows that this channel model corresponds to the BSC model, independent of the statistics of the source symbols.
  • Thus, both solutions are correct.


(3)  The transition probability $p_2$ now describes the case where the decision threshold $E = 0.25 \cdot s_0$ was mistakenly undershot.

  • Then $v_{\nu} = \mathbf{L}$, although $q_{\nu} = \mathbf{H}$ was sent. Thus, the distance from the threshold is only $0.75 \cdot s_0$ and it holds:
$$p_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Q} \left ( \frac{0.75 \cdot s_0}{\sigma} \right ) = {\rm Q} \left ( 0.75 \cdot 2.32 \right ) = {\rm Q} \left ( 1.74 \right )\hspace{0.15cm}\underline {\approx 0.041}\hspace{0.05cm}, \hspace{0.5cm} p_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}1 - p_{\rm 2} \hspace{0.15cm}\underline {= 0.959}\hspace{0.05cm}.$$
  • Similarly, the transition probabilities $p_3$ and $p_4$ can be calculated, now assuming the threshold distance $1.25 \cdot s_0$:
$$p_{\rm 3} = {\rm Q} \left ( 1.25 \cdot 2.32 \right ) = {\rm Q} \left ( 2.90 \right )\hspace{0.15cm}\underline {\approx 0.002}\hspace{0.05cm}, \hspace{0.2cm} p_{\rm 4} = 1 - p_{\rm 3}\hspace{0.15cm}\underline { = 0.998}\hspace{0.05cm}.$$


(4)  Neither of the two solutions applies:

  • With the decision threshold $E ≠ 0$, the BSC model is not applicable regardless of the symbol statistic,
  • since the symmetry property of the channel (the "S" flag in "BSC") does not hold.


(5)  Statements 1 and 3 are true, but statement 2 is not:

  • In the BSC model, $p_{\rm M} = 1\%$ is independent of the symbol probabilities $p_{\rm L}$ and $p_{\rm H}$.
  • In contrast, for $p_{\rm L} = 0.9$, $p_{\rm H} = 0.1$ and $E = +s_0/4$:
$$p_{\rm M} = 0.9 \cdot p_{\rm 3} + 0.1 \cdot p_{\rm 2}= 0.9 \cdot 0.2\% + 0.1 \cdot 4.1\% \approx 0.59\% \hspace{0.05cm}.$$
  • The minimum results for $p_{\rm L} = 0.93$ and $p_{\rm H} = 0.07$ to $p_{\rm M} \approx 0.45\%$.