Difference between revisions of "Aufgaben:Exercise 5.3: Mean Square Error"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaussian pulse, square pulse, sinc pulse and some parameters]]
+
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaussian pulse, square pulse, <br>sinc pulse and some parameters]]
  
We consider three pulse-like signals, namely
+
We consider three pulses, namely
 
*a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Gaussian_Impulse|Gaussian pulse]]&nbsp; with amplitude&nbsp; $A$&nbsp; and  equivalent duration&nbsp; $T$:
 
*a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Gaussian_Impulse|Gaussian pulse]]&nbsp; with amplitude&nbsp; $A$&nbsp; and  equivalent duration&nbsp; $T$:
 
   
 
   
 
:$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
 
:$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
  
*a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Rectangular_Impulse|Rectangular pulse]]&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and (equivalent) duration&nbsp; $T$:
+
*a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Rectangular_Impulse|rectangular pulse]]&nbsp; $x_2(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and (equivalent) duration&nbsp; $T$:
 
   
 
   
 
:$$x_2(t)  = \left\{ \begin{array}{c} A \\
 
:$$x_2(t)  = \left\{ \begin{array}{c} A \\
Line 20: Line 20:
 
\end{array}$$
 
\end{array}$$
  
*a so called&nbsp; ''Sinc pulse''&nbsp; according to the following definition:
+
*a so called&nbsp; "sinc pulse"&nbsp; according to the following definition:
 
   
 
   
:$$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) =
+
:$$x_3(t) = A \cdot {\rm sinc}(t/ T) ,\hspace{0.15cm}{\rm sinc}(x) =
  \sin(x)/x\hspace{0.05cm}.$$
+
  \sin(\pi x)/(\pi  x)\hspace{0.05cm}.$$
  
 
Let the signal parameters be&nbsp; $A = 1\ {\rm V}$&nbsp;  and&nbsp; $T = 1\ {\rm ms}$ in each case.
 
Let the signal parameters be&nbsp; $A = 1\ {\rm V}$&nbsp;  and&nbsp; $T = 1\ {\rm ms}$ in each case.
  
The conventional&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform]]&nbsp;  leads to the following spectral functions:
+
The conventional&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier transform]]&nbsp;  leads to the following spectral functions:
 
* $X_1(f)$&nbsp; is also Gaussian,
 
* $X_1(f)$&nbsp; is also Gaussian,
* $X_2(f)$&nbsp; runs according to the&nbsp; $\rm si$–function,
+
* $X_2(f)$&nbsp; runs according to the&nbsp; $\rm sinc$ function,
 
* $X_3(f)$&nbsp; is constant for&nbsp; $|f| < 1/(2 T)$&nbsp; and outside zero.
 
* $X_3(f)$&nbsp; is constant for&nbsp; $|f| < 1/(2 T)$&nbsp; and outside zero.
  
Line 35: Line 35:
 
For all spectral functions,&nbsp; $X(f = 0) = A \cdot T$.
 
For all spectral functions,&nbsp; $X(f = 0) = A \cdot T$.
  
If the discrete-frequency spectrum is determined by the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform(DFT)]]&nbsp; with the DFT parameters  
+
If the discrete-frequency spectrum is determined by the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]&nbsp; with the DFT parameters  
* $N = 512$ &nbsp; &rArr; &nbsp; number of samples considered in the time and frequency domain,*$f_{\rm A}$  &nbsp; &rArr; &nbsp; interpolation distance in the frequency domain,
+
* $N = 512$ &nbsp; &rArr; &nbsp; number of samples considered in the time and frequency domain,
 +
*$f_{\rm A}$  &nbsp; &rArr; &nbsp; interpolation distance in the frequency domain,
  
  
Line 42: Line 43:
  
  
The other DFT parameters are clearly fixed withn&bsp; $N$&nbsp; uan&nbsp; $f_{\rm A}$&nbsp; .The following applies to these:  
+
The other DFT parameters are clearly fixed withn&nbsp; $N$&nbsp; and&nbsp; $f_{\rm A}$.&nbsp; The following applies to these:  
 
:$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm
 
:$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm
 
  P}/N
 
  P}/N
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
The accuracy of the respective DFT approximation is captured by thenbsp; ''mean square error''&nbsp; (MSE, here MQF):  
+
The accuracy of the respective DFT approximation is captured by the&nbsp; "mean square error"&nbsp; $\rm (MSE)$.&nbsp; <br>Here, we use the designation&nbsp; $\rm MQF$ &nbsp; &rArr; &nbsp; (German:&nbsp; "Mittlerer Quadratischer Fehler"):  
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
Line 64: Line 65:
  
 
''Hints:''  
 
''Hints:''  
*This task belongs to the chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible Errors when Using DFT]].
+
*This task belongs to the chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible errors when using DFT]].
 
   
 
   
*The theory for this chapter is summarised in the learning video&nbsp; [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Possible Errors when Using DFT]]&nbsp;.
+
*The theory for this chapter is summarised in the (German language) learning video <br> &nbsp; &nbsp; &nbsp;[[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]] &nbsp; &rArr; &nbsp; "Possible errors when using DFT".
  
  
Line 82: Line 83:
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
  
{Due to which effects does the MQF value for the Gaussian pulse increase when using &nbsp;  $f_{\rm A} \cdot T = 1/4$&nbsp; instead of&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; verwendet?
+
{Due to which effect does the MQF value for the Gaussian pulse increase when using &nbsp;  $f_{\rm A} \cdot T = 1/4$&nbsp; instead of&nbsp; $f_{\rm A} \cdot T = 1/8$?
 
|type="()"}
 
|type="()"}
 
+ The truncation error is significantly increased.
 
+ The truncation error is significantly increased.
 
- The aliasing error is significantly increased.
 
- The aliasing error is significantly increased.
  
{Due to what effects does the MQF value for the Gaussian momentum increase when using&nbsp; $f_{\rm A} \cdot T = 1/16$&nbsp; instead of  $f_{\rm A} \cdot T = 1/4$&nbsp; verwendet?
+
{Due to what effect does the MQF value for the Gaussian pulse increase when using&nbsp; $f_{\rm A} \cdot T = 1/16$&nbsp; instead of  $f_{\rm A} \cdot T = 1/4$?
 
|type="()"}
 
|type="()"}
- The termination error is significantly increased.termination
+
- The truncation error is significantly increased.
 
+ The aliasing error is significantly increased.
 
+ The aliasing error is significantly increased.
  
{Compare the MQF(MSE) values of the rectangular pulse&nbsp; $x_2(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$. Which of the following statements are true?
+
{Compare the&nbsp; $\rm MQF$&nbsp; values of the rectangular pulse&nbsp; $x_2(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
 
+ $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_2(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
 
+ $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_2(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
 
+ The aliasing error dominates.
 
+ The aliasing error dominates.
- The termination error dominates.
+
- The truncation error dominates.
  
{Compare the MQF values of the slit pulse&nbsp; $x_3(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$. Which of the following statements are true?
+
{Compare the&nbsp; $\rm MQF$&nbsp; values of the "sinc pulse"&nbsp; $x_3(t)$&nbsp; with those of the Gaussian pulse&nbsp; $x_1(t)$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
 
- $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_3(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
 
- $\rm MQF$&nbsp; becomes larger because the spectral function&nbsp; $X_3(f)$&nbsp; decays asymptotically slower than&nbsp; $X_1(f)$.
 
- The aliasing error dominates.
 
- The aliasing error dominates.
+ The termination error dominates.
+
+ The truncation error dominates.
  
 
</quiz>
 
</quiz>

Revision as of 17:00, 17 May 2021

Gaussian pulse, square pulse,
sinc pulse and some parameters

We consider three pulses, namely

  • Gaussian pulse  with amplitude  $A$  and equivalent duration  $T$:
$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
  • rectangular pulse  $x_2(t)$  with amplitude  $A$  and (equivalent) duration  $T$:
$$x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}$$
  • a so called  "sinc pulse"  according to the following definition:
$$x_3(t) = A \cdot {\rm sinc}(t/ T) ,\hspace{0.15cm}{\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.05cm}.$$

Let the signal parameters be  $A = 1\ {\rm V}$  and  $T = 1\ {\rm ms}$ in each case.

The conventional  Fourier transform  leads to the following spectral functions:

  • $X_1(f)$  is also Gaussian,
  • $X_2(f)$  runs according to the  $\rm sinc$ function,
  • $X_3(f)$  is constant for  $|f| < 1/(2 T)$  and outside zero.


For all spectral functions,  $X(f = 0) = A \cdot T$.

If the discrete-frequency spectrum is determined by the  Discrete Fourier Transform  with the DFT parameters

  • $N = 512$   ⇒   number of samples considered in the time and frequency domain,
  • $f_{\rm A}$   ⇒   interpolation distance in the frequency domain,


this will lead to distortions due to truncation and/or aliasing errors.


The other DFT parameters are clearly fixed withn  $N$  and  $f_{\rm A}$.  The following applies to these:

$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.$$

The accuracy of the respective DFT approximation is captured by the  "mean square error"  $\rm (MSE)$. 
Here, we use the designation  $\rm MQF$   ⇒   (German:  "Mittlerer Quadratischer Fehler"):

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$

The resulting MQF values are given in the graph above, valid for  $N = 512$  as well as for

  • $f_{\rm A} \cdot T = 1/4$,
  • $f_{\rm A} \cdot T = 1/8$,
  • $f_{\rm A} \cdot T = 1/16$.





Hints:



Questions

1

Which range  $|f| \leq f_{\text{max}}$  is covered with  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$ ?

$f_{\text{max}} \cdot T\ = \ $

2

At what time interval  $T_{\rm A}$  are the sampled values of  $x(t)$  available?

$T_{\rm A}/T\ = \ $

3

Due to which effect does the MQF value for the Gaussian pulse increase when using   $f_{\rm A} \cdot T = 1/4$  instead of  $f_{\rm A} \cdot T = 1/8$?

The truncation error is significantly increased.
The aliasing error is significantly increased.

4

Due to what effect does the MQF value for the Gaussian pulse increase when using  $f_{\rm A} \cdot T = 1/16$  instead of $f_{\rm A} \cdot T = 1/4$?

The truncation error is significantly increased.
The aliasing error is significantly increased.

5

Compare the  $\rm MQF$  values of the rectangular pulse  $x_2(t)$  with those of the Gaussian pulse  $x_1(t)$.  Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_2(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The truncation error dominates.

6

Compare the  $\rm MQF$  values of the "sinc pulse"  $x_3(t)$  with those of the Gaussian pulse  $x_1(t)$.  Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_3(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The truncation error dominates.


Solution

(1)  With the DFT parameters  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$  the following follows after multiplying the two quantities:

$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
  • This covers the frequency range  $–f_{\rm P}/2 \leq f < f_{\rm P}/2$ :
$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$


(2)  The periodisation of the time function is based on the parameter  $T_{\rm P} = 1/f_{\rm A} = 8T$.

  • The distance between two samples is therefore
$$T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$


(3)  Correct is the proposed solution 1   ⇒   increase of the termination error:

  • This measure simultaneously halves  $T_{\rm P}$  from  $8T$  to  $4T$ .*Thus, only samples in the range  $–2T \leq t < 2T$, are taken into account, which increases the termination error.
  • The mean square error  $(\rm MQF)$  increases from  $0.15 \cdot 10^{-15}$  to  $8 \cdot 10^{-15}$ for the Gaussian pulse  $x_1(t)$ , although the aliasing error actually decreases slightly by this measure.


(4)  Correct is the proposed solution 2   ⇒   increase of the aliasing error::

  • By halving  $f_{\rm A}$  wird auch  $f_{\rm P}$  is also halved.
  • As a result, the aliasing error becomes somewhat larger with a smaller termination error at the same time.
  • Overall, for the Gaussian pulse  $x_1(t)$ , the mean square error  $(\rm MQF)$  increases from  $1.5 \cdot 10^{-16}$  to  $3.3 \cdot 10^{-16}$.


(5)  Proposed solutions 1 and 2 are correct:

  • As can be seen from the graph, the last statement is not true in contrast to the first two.
  • Due to the slow,  $\rm si$–shaped decay of the spectral function, the aliasing error dominates.
  • The  $\rm MQF$ value at  $f_{\rm A} \cdot T = 1/8$  with  $1.4 \cdot 10^{-5}$  is therefore significantly larger than for the Gaussian pulse  $(1.5 \cdot 10^{-16})$.


(6)  Proposed solution 3 is correct:

  • The spectral function  $X_3(f)$  here has a rectangular lead, so that the first two statements do not apply.
  • On the other hand, a termination error is unavoidable with this  $\rm si$–shaped time function. This leads to the large  $\rm MQF$ values given.