Difference between revisions of "Aufgaben:Exercise 5.3Z: Zero-Padding"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1146__Sig_Z_5_3_neu.png|right|frame|$\rm MQF$– values as a fuction of  $T_{\rm A} /T$  and  $N$]]
+
[[File:P_ID1146__Sig_Z_5_3_neu.png|right|frame|$\rm MQF$ values as a function <br>of&nbsp; $T_{\rm A} /T$&nbsp; and&nbsp; $N$]]
We consider the DFT of a rectangular pulse&nbsp; $x(t)$&nbsp; of height&nbsp; $A =1$&nbsp; and duration&nbsp; $T$. Thus the spectral function&nbsp; $X(f)$&nbsp; a&nbsp; $\sin(f)/f$–shaped course.
+
We consider the DFT of a rectangular pulse&nbsp; $x(t)$&nbsp; of height&nbsp; $A =1$&nbsp; and duration&nbsp; $T$.&nbsp; Thus the spectral function&nbsp; $X(f)$&nbsp; has a&nbsp; $\sin(f)/f$–shaped course.
  
For this special case the influence of the DFT parameter&nbsp; $N$&nbsp; is to be analysed, whereby the interpolation point distance in the time domain should always be&nbsp; $T_{\rm A} = 0.01T$&nbsp; bzw.&nbsp; $T_{\rm A} = 0.05T$&nbsp;.
+
For this special case the influence of the DFT parameter&nbsp; $N$&nbsp; is to be analysed, whereby the interpolation point distance in the time domain should always be&nbsp; $T_{\rm A} = 0.01T$&nbsp; or&nbsp; $T_{\rm A} = 0.05T$.
 +
 
 +
The resulting values for the "mean square error"&nbsp; $\rm (MSE)$&nbsp; of the grid values in the frequency domain are given opposite for different values of &nbsp; $N$.&nbsp; Here, we use instead of&nbsp; $\rm MSE$&nbsp; the designation&nbsp; $\rm MQF$ &nbsp; &rArr; &nbsp; (German:&nbsp; "Mittlerer Quadratischer Fehler"):
  
The resulting values for the ''mean square error'' &nbsp; (MSE, here MQF) of the grid values in the frequency domain are given opposite for different values of &nbsp; $N$&nbsp;:
 
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
Thus, for&nbsp; $T_A/T = 0.01$&nbsp;,&nbsp; $101$&nbsp; of the DFT coefficients&nbsp; $d(ν)$&nbsp; are always different from zero.
+
Thus, for&nbsp; $T_{\rm A}/T = 0.01$&nbsp;,&nbsp; $101$&nbsp; of the DFT coefficients&nbsp; $d(ν)$&nbsp; are always different from zero.
  
 
:* Of these, &nbsp; $99$&nbsp;  have the value&nbsp; $1$&nbsp; and the two marginal coefficients are each equal to&nbsp; $0.5$.
 
:* Of these, &nbsp; $99$&nbsp;  have the value&nbsp; $1$&nbsp; and the two marginal coefficients are each equal to&nbsp; $0.5$.
  
:* If&nbsp; $N$, is increased, the DFT coefficient field is filled with zeros.
+
:* If&nbsp; $N$&nbsp; is increased, the DFT coefficient field is filled with zeros.
 
 
:*This is then referred to as ''„zero padding”''.
 
 
 
 
 
  
 +
:*This is then referred to as&nbsp; $\text{zero padding}$.
  
  
Line 28: Line 26:
  
 
''Hints:''  
 
''Hints:''  
*This task belongs to the chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible Errors when Using DFT]].
+
*This task belongs to the chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible errors when using DFT]].
 
   
 
   
*The theory of this chapter is summarised in the learning video&nbsp; [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Possible Errors when Using DFT]]&nbsp;.
+
*The theory for this chapter is summarised in the (German language) learning video <br> &nbsp; &nbsp; &nbsp;[[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]] &nbsp; &rArr; &nbsp; "Possible errors when using DFT".
 +
 
  
  

Revision as of 17:41, 17 May 2021

$\rm MQF$ values as a function
of  $T_{\rm A} /T$  and  $N$

We consider the DFT of a rectangular pulse  $x(t)$  of height  $A =1$  and duration  $T$.  Thus the spectral function  $X(f)$  has a  $\sin(f)/f$–shaped course.

For this special case the influence of the DFT parameter  $N$  is to be analysed, whereby the interpolation point distance in the time domain should always be  $T_{\rm A} = 0.01T$  or  $T_{\rm A} = 0.05T$.

The resulting values for the "mean square error"  $\rm (MSE)$  of the grid values in the frequency domain are given opposite for different values of   $N$.  Here, we use instead of  $\rm MSE$  the designation  $\rm MQF$   ⇒   (German:  "Mittlerer Quadratischer Fehler"):

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$

Thus, for  $T_{\rm A}/T = 0.01$ ,  $101$  of the DFT coefficients  $d(ν)$  are always different from zero.

  • Of these,   $99$  have the value  $1$  and the two marginal coefficients are each equal to  $0.5$.
  • If  $N$  is increased, the DFT coefficient field is filled with zeros.
  • This is then referred to as  $\text{zero padding}$.




Hints:




Questions

1

Which statements can be derived from the given MQF values  $($valid for  $T_{\rm A}/T = 0.01$  and  $N ≥ 128)$  abgeleitet werden?

The  $\rm MQF$ value here is almost independent o  $N$.
The  $\rm MQF$ value is determined by the termination error.
The  $\rm MQF$ value is determined by the aliasing error.

2

Let  $T_{\rm A}/T = 0.01$. What is the distance  $f_{\rm A}$  of adjacent samples in the frequency domain for  $N = 128$  and  $N = 512$?

$N = 128$:     $f_{\rm A} \cdot T \ = \ $

$N = 512$:     $f_{\rm A} \cdot T \ = \ $

3

What does the product  $\text{MQF} \cdot f_{\rm A}$  indicate in terms of DFT quality?

The product  $\text{MQF} \cdot f_{\rm A}$  considers the accuracy and density of the DFT values.
The product  $\text{MQF} \cdot f_{\rm A}$  should be as large as possible.

4

  $N = 128$  is now fixed. Which statements apply to the comparison of the DFT results with  $T_{\rm A}/T = 0.01$  und  $T_{\rm A}/T = 0.05$ ?

Mit  $T_{\rm A}/T = 0.05$  you get a finer frequency resolution.
Mit  $T_{\rm A}/T = 0.05$  the  $\rm MQF$ value is smaller.
Mit  $T_{\rm A}/T = 0.05$  the influence of the termination error decreases.
Mit  $T_{\rm A}/T = 0.05$  the influence of the aliasing error increases.

5

Now  $N = 64$.Which statements are true for the comparison of the DFT results with  $T_{\rm A}/T = 0.01$  und  $T_{\rm A}/T = 0.05$ ?

With  $T_{\rm A}/T = 0.05$  you get a finer frequency resolution.
With  $T_{\rm A}/T = 0.05$  the  $\rm MQF$ value is smaller.
With  $T_{\rm A}/T = 0.05$  the influence of the termination error decreases.
With  $T_{\rm A}/T = 0.05$  the influence of the aliasing error increases.


Solution

(1)  Proposed solutions 1 and 3 are correct:

  • Already with  $N = 128$ ,  $T_{\rm P} = 1.28 \cdot T$, i.e. larger than the width of the rectangle.
  • Thus the termination error plays no role at all here.
  • The  $\rm MQF$ value is determined solely by the aliasing error.
  • The numerical values clearly confirm that  $\rm MQF$  is (almost) independent of  $N$  ist.


(2)  From  $T_{\rm A}/T = 0.01$  follows  $f_{\rm P} \cdot T = 100$.

  • The supporting values of  $X(f)$ thus lie in the range  $–50 ≤ f \cdot T < +50$.
  • For the distance between two samples in the frequency range,   $f_{\rm A} = f_{\rm P}/N$ applies. This gives the following results:
  • $N = 128$:   $f_{\rm A} \cdot T \; \underline{\approx 0.780}$,
  • $N = 512$:   $f_{\rm A} \cdot T \; \underline{\approx 0.195}$.


(3)  The first statement is correct:

  • For  $N = 128$ , the product is  $\text{MQF} \cdot f_{\rm A} \approx 4.7 \cdot 10^{-6}/T$. For  $N = 512$ , the product is smaller by a factor of about  $4$ .
  • This means that „zero padding” does not achieve greater DFT accuracy, but a finer „resolution” of the frequency range.
  • The product  $\text{MQF} \cdot f_{\rm A}$  takes this fact into account; it should always be as small as possible.


(4)  Proposed solutions 1 and 4 are correct:

  • Because of  $T_{\rm A} \cdot f_{\rm A} \cdot N = 1$ , a constant  $N$  always results in a smaller  $f_{\rm A}$ value when $T_{\rm A}$ is increased.
  • From the table on the information page, one can see that the mean square error  $\rm (MQF)$  is significantly increased  $($by a factor of about  $400)$ .
  • The effect is due to the aliasing error, since the transition from  $T_{\rm A}/T = 0.01$  auf  $T_{\rm A}/T = 0.05$  reduces the frequency period by a factor of  $5$ .
  • The termination error, on the other hand, continues to play no role with the square pulse as long as  $T_{\rm P} = N \cdot T_{\rm A}$  is greater than the pulse duration  $T$.


(5)  All statements are true:

  • With the parameter values  $N = 64$  and  $T_{\rm A}/T = 0.01$ , an extremely large termination error occurs.
  • All time coefficients are  $1$, so the DFT incorrectly interprets a DC signal instead of the square wave function.