Difference between revisions of "Aufgaben:Exercise 5.4:Is the BSC Model Renewing?"

From LNTwww
Line 58: Line 58:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Nach der allgemeinen Definition ist $\varphi_e(k = 0) = {\rm E}[e_{\nu}^2]$.  
+
'''(1)'''  According to the general definition, $\varphi_e(k = 0) = {\rm E}[e_{\nu}^2]$.  
*Wegen $e_{\nu} ∈ \{0, 1\}$ gilt aber gleichzeitig $\varphi_e(k = 0) = {\rm E}[e_\nu]$, was der mittleren Fehlerwahrscheinlichkeit $p_{\rm M} = p$  entspricht   ⇒   $\varphi_e(k = 0) \ \underline { = 0.01}$.
+
*However, because of $e_{\nu} ∈ \{0, 1\}$, $\varphi_e(k = 0) = {\rm E}[e_\nu]$, holds simultaneously, which corresponds to the mean error probability $p_{\rm M} = p$    ⇒   $\varphi_e(k = 0) \ \underline { = 0.01}$.
  
  
  
'''(2)'''  Nach der allgemeinen FKF–Definition gilt unter Berücksichtigung des BSC–Modells:
+
'''(2)'''  According to the general ECF definition, considering the BSC model:
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}]={\rm Pr}[e_{\nu} = 1 \cap
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}]={\rm Pr}[e_{\nu} = 1 \cap
 
e_{\nu + 1} = 1] = p \cdot p = p^2 \hspace{0.15cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
 
e_{\nu + 1} = 1] = p \cdot p = p^2 \hspace{0.15cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
  
Zum gleichen Ergebnis kommt man über die nur für erneuernde Kanalmodelle gültige Gleichung:
+
The same result is obtained via the equation valid only for renewing channel models:
 
:$$\varphi_{e}(k = 1) = {\rm Pr}(a=1) \cdot \varphi_{e}(0) = p \cdot
 
:$$\varphi_{e}(k = 1) = {\rm Pr}(a=1) \cdot \varphi_{e}(0) = p \cdot
 
p = p^2 = 10^{-4}\hspace{0.05cm}.$$
 
p = p^2 = 10^{-4}\hspace{0.05cm}.$$
  
Das bedeutet: Der FKF–Wert $\varphi_e(1)$ spricht nicht dagegen, dass das BSC–Modell erneuernd ist.
+
That means: The ECF value $\varphi_e(1)$ does not argue against the BSC model being renewing.
  
  
  
'''(3)'''  Aus der Grafik erkennt man bereits, dass $\varphi_e(k = 2) = \varphi_e(k = 1) = 10^{–4}$ gelten wird. Die explizite Berechnung bestätigt dieses Ergebnis:
+
'''(3)'''  From the graph, we can already see that $\varphi_e(k = 2) = \varphi_e(k = 1) = 10^{–4}$ will hold. The explicit calculation confirms this result:
 
:$$\varphi_{e}(k \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2) = {\rm
 
:$$\varphi_{e}(k \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2) = {\rm
 
Pr}[e_{\nu} = 1 \cap e_{\nu + 2} = 1] =  
 
Pr}[e_{\nu} = 1 \cap e_{\nu + 2} = 1] =  
Line 82: Line 82:
 
e_{\nu + 1} = 0 \cap e_{\nu + 2} = 1] \hspace{0.05cm}.$$
 
e_{\nu + 1} = 0 \cap e_{\nu + 2} = 1] \hspace{0.05cm}.$$
  
*Der erste Term lautet beim BSC-Modell mit den bedingten Wahrscheinlichkeiten (nur erste Ordnung erforderlich):
+
*The first term in the BSC model with the conditional probabilities (only first order required) is:
 
:$${\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 
:$${\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
 
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
Line 90: Line 90:
 
p^3\hspace{0.05cm}.$$
 
p^3\hspace{0.05cm}.$$
  
*Entsprechend gilt für den zweiten Term:
+
*Correspondingly, for the second term:
 
:$${\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 
:$${\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
 
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
Line 102: Line 102:
 
10^{-4}}\hspace{0.05cm}.$$
 
10^{-4}}\hspace{0.05cm}.$$
  
*Mit der nur für erneuernde Kanalmodelle gültigen Gleichung erhält man:
+
*Using the equation valid only for renewing channel models, we obtain:
 
:$$\varphi_{e}(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
:$$\varphi_{e}(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
Pr}(a=1) \cdot \varphi_{e}(k= 1) + {\rm Pr}(a=2) \cdot
 
Pr}(a=1) \cdot \varphi_{e}(k= 1) + {\rm Pr}(a=2) \cdot
Line 108: Line 108:
 
\cdot p = p^2 \hspace{0.05cm}.$$
 
\cdot p = p^2 \hspace{0.05cm}.$$
  
*Auch dieses Ergebnis spricht also nicht dagegen, dass das BSC–Modell erneuernd ist.
+
*Thus, this result also does not argue against the BSC model being renewing.
  
  
  
  
'''(4)'''  Die bisherigen Ergebnisse lassen schon darauf schließen, dass das BSC–Modell erneuernd ist. Und auch die Tatsache, dass hier die einzelnen Fehlerabstände statistisch unabhängig voneinander sind, spricht für diese These.  
+
'''(4)'''  The previous results already suggest that the BSC model is renewing. And also the fact that here the individual error distances are statistically independent of each other speaks in favor of this thesis.
  
*Als letzten Beweis zeigen wird, dass die Gleichung
+
*As a final proof, we show that the equation
 
:$$\varphi_{e}(k) = \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa) \cdot
 
:$$\varphi_{e}(k) = \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa) \cdot
 
\varphi_{e}(k - \kappa)= \varphi_{e}(0) \cdot  {\rm Pr}(a = k)+
 
\varphi_{e}(k - \kappa)= \varphi_{e}(0) \cdot  {\rm Pr}(a = k)+
Line 121: Line 121:
 
\kappa)$$
 
\kappa)$$
  
:das richtige Ergebnis liefert, wenn $\varphi_e(0) = p$ und $\varphi_e(1) = \ \text{...} \ = \varphi_e(k–1) = p^2$ eingesetzt wird.  
+
:yields the correct result when $\varphi_e(0) = p$ and $\varphi_e(1) = \ \text{...} \ = \varphi_e(k–1) = p^2$ is used.
*Man erhält
+
*One obtains
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p \cdot
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p \cdot
 
(1-p)^{k-1} \cdot p + p^2 \cdot \sum_{\kappa = 1}^{k-1}
 
(1-p)^{k-1} \cdot p + p^2 \cdot \sum_{\kappa = 1}^{k-1}
Line 128: Line 128:
 
\cdot \sum_{\kappa = 0}^{k-2} (1-p)^{\kappa}\hspace{0.05cm}.$$
 
\cdot \sum_{\kappa = 0}^{k-2} (1-p)^{\kappa}\hspace{0.05cm}.$$
  
*Mit der Summenformel einer geometrischen Reihe
+
*Using the summation formula of a geometric series
 
:$$\sum_{\kappa = 0}^{n} x^{\kappa} = \frac{1 - x^{n+1}}{1 -
 
:$$\sum_{\kappa = 0}^{n} x^{\kappa} = \frac{1 - x^{n+1}}{1 -
 
x}\hspace{0.05cm},$$
 
x}\hspace{0.05cm},$$
  
:lässt sich dieser Ausdruck wie folgt darstellen:
+
:this expression can be represented as follows:
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p^2 \cdot
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p^2 \cdot
 
(1-p)^{k-1} + p^3 \cdot \frac{1 - (1-p)^{k-1}}{1 -
 
(1-p)^{k-1} + p^3 \cdot \frac{1 - (1-p)^{k-1}}{1 -
Line 138: Line 138:
 
(1-p)^{k-1} + 1 - (1-p)^{k-1} \right ] = p^2\hspace{0.05cm}.$$
 
(1-p)^{k-1} + 1 - (1-p)^{k-1} \right ] = p^2\hspace{0.05cm}.$$
  
*Das bedeutet:&nbsp; Das BSC&ndash;Modell ist tatsächlich erneuernd &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 1</u>.
+
*This means:&nbsp; The BSC model is in fact renewing &nbsp; &#8658; &nbsp; <u>solution 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]
 
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]

Revision as of 20:16, 27 August 2022

Error correlation function (ECF)
of the BSC model

For the description of digital channel models are mainly used:

  • the error distance distribution (EDD)
$$V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa)\hspace{0.05cm},$$
  • the error correlation function (ECF)
$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}] \hspace{0.05cm}.$$

For a large class of channel models, there is a simple relationship between these descriptive quantities, viz.

$$\varphi_{e}(k) = \left\{ \begin{array}{c} \varphi_{e}(0) \\ \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)\end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$

Such channel models are called  renewing. They are characterized by the fact that in them the individual error distances are statistically independent of each other, so that to generate the error sequence the often faster way can be followed via the generation of the error distances, as described in  "Exercise 5.5"

In this exercise, we want to check whether the BSC model is renewing according to the upper graph.

  • The error correlation function  $\varphi_e(k)$  is shown in the bottom graph.
  • The probabilities of the individual error distances are given by the BSC model as follows:
$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.$$



Notes:

  • The exercise belongs to the chapter  "Binary Symmetric Channel (BSC)".
  • Use the BSC parameter  $p = 0.01$ for numerical calculations.
  • The mean error probability  $p_{\rm M}$ then has the same value.



Questions

1

Calculate the ECF value  $\varphi_e(k = 0)$.

$\varphi_e(k = 0) \ = \ $

$\ \cdot 10^{\rm -2} $

2

Calculate the ECF value  $\varphi_e(k = 1)$.

$\varphi_e(k = 1) \ = \ $

$\ \cdot 10^{\rm -2} $

3

Calculate the ECF value  $\varphi_e(k = 2)$.

$\varphi_e(k = 2) \ = \ $

$\ \cdot 10^{\rm -2} $

4

Provide a reasoned summary of this exercise.

The BSC model is renewing.
The BSC model is non-renewing.


Solution

(1)  According to the general definition, $\varphi_e(k = 0) = {\rm E}[e_{\nu}^2]$.

  • However, because of $e_{\nu} ∈ \{0, 1\}$, $\varphi_e(k = 0) = {\rm E}[e_\nu]$, holds simultaneously, which corresponds to the mean error probability $p_{\rm M} = p$    ⇒   $\varphi_e(k = 0) \ \underline { = 0.01}$.


(2)  According to the general ECF definition, considering the BSC model:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}]={\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 1] = p \cdot p = p^2 \hspace{0.15cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$

The same result is obtained via the equation valid only for renewing channel models:

$$\varphi_{e}(k = 1) = {\rm Pr}(a=1) \cdot \varphi_{e}(0) = p \cdot p = p^2 = 10^{-4}\hspace{0.05cm}.$$

That means: The ECF value $\varphi_e(1)$ does not argue against the BSC model being renewing.


(3)  From the graph, we can already see that $\varphi_e(k = 2) = \varphi_e(k = 1) = 10^{–4}$ will hold. The explicit calculation confirms this result:

$$\varphi_{e}(k \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2) = {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 2} = 1] = {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 1 \cap e_{\nu + 2} = 1] + {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 0 \cap e_{\nu + 2} = 1] \hspace{0.05cm}.$$
  • The first term in the BSC model with the conditional probabilities (only first order required) is:
$${\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 1] \cdot {\rm Pr}[e_{\nu +1} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1] \cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot p \cdot p = p^3\hspace{0.05cm}.$$
  • Correspondingly, for the second term:
$${\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 0] \cdot {\rm Pr}[e_{\nu +1} = 0 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1] \cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot (1-p) \cdot p = p^2 -p^3\hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} \varphi_{e}(k = 2) = {\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] + {\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] = (p^3) + (p^2 -p^3)= p^2\hspace{0.15cm}\underline { = 10^{-4}}\hspace{0.05cm}.$$
  • Using the equation valid only for renewing channel models, we obtain:
$$\varphi_{e}(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(a=1) \cdot \varphi_{e}(k= 1) + {\rm Pr}(a=2) \cdot \varphi_{e}(k= 0)= p \cdot p^2 + (1-p) \cdot p \cdot p = p^2 \hspace{0.05cm}.$$
  • Thus, this result also does not argue against the BSC model being renewing.



(4)  The previous results already suggest that the BSC model is renewing. And also the fact that here the individual error distances are statistically independent of each other speaks in favor of this thesis.

  • As a final proof, we show that the equation
$$\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)= \varphi_{e}(0) \cdot {\rm Pr}(a = k)+ \sum_{\kappa = 1}^{k-1} \varphi_{e}(k - \kappa) \cdot {\rm Pr}(a = \kappa)$$
yields the correct result when $\varphi_e(0) = p$ and $\varphi_e(1) = \ \text{...} \ = \varphi_e(k–1) = p^2$ is used.
  • One obtains
$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p \cdot (1-p)^{k-1} \cdot p + p^2 \cdot \sum_{\kappa = 1}^{k-1} (1-p)^{\kappa-1} \cdot p =p^2 \cdot (1-p)^{k-1} + p^3 \cdot \sum_{\kappa = 0}^{k-2} (1-p)^{\kappa}\hspace{0.05cm}.$$
  • Using the summation formula of a geometric series
$$\sum_{\kappa = 0}^{n} x^{\kappa} = \frac{1 - x^{n+1}}{1 - x}\hspace{0.05cm},$$
this expression can be represented as follows:
$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p^2 \cdot (1-p)^{k-1} + p^3 \cdot \frac{1 - (1-p)^{k-1}}{1 - (1-p)}= p^2 \cdot \left [ (1-p)^{k-1} + 1 - (1-p)^{k-1} \right ] = p^2\hspace{0.05cm}.$$
  • This means:  The BSC model is in fact renewing   ⇒   solution 1.