Difference between revisions of "Aufgaben:Exercise 5.5: ACF-equivalent Filters"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Erzeugung vorgegebener AKF-Eigenschaften
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Creation_of_Predefined_ACF_Properties
 
}}
 
}}
  
[[File:P_ID558__Sto_A_5_5_neu.png|right|frame|Zwei AKF-äquivalente Filter]]
+
[[File:P_ID558__Sto_A_5_5_neu.png|right|frame|Two ACF–equivalent filters]]
Wir betrachten die beiden skizzierten digitalen Filter:
+
We consider the two digital filters outlined:
  
* Die einzelnen Elemente der Eingangsfolge $\left\langle {x_\nu  } \right\rangle$ sind in beiden Fällen jeweils statistisch voneinander unabhängig und gleichverteilt zwischen $-1$ und $+1$.
+
* The individual elements of the input sequence  $\left\langle {x_\nu  } \right\rangle$  are in both cases statistically independent of each other and equally distributed between  $-1$  and  $+1$.
* Daraus folgt direkt für den Mittelwert und die Varianz:
+
* It follows directly for the mean and the variance:
 
:$$m_x  = 0,\quad \sigma _x^2  = {1}/{3}.$$
 
:$$m_x  = 0,\quad \sigma _x^2  = {1}/{3}.$$
  
Die beiden Verzögerungszeiten von $\text{Filter 1}$ sind jeweils gleich $T_{\rm A} = 1 \hspace{0.05cm} \rm µ s$. Die Verzögerungen von $\text{Filter 2}$ sind doppelt so lang.
+
*The delay times of  $\text{Filter 1}$  are equal to  $T_{\rm A} = 1 \hspace{0.05cm} \rm µ s$   in each case.  The delays of  $\text{Filter 2}$  are twice as long.
  
Die Koeffizienten $a_0$ und $a_1$ von $\text{Filter 2}$ sollen so eingestellt werden, dass die Autokorrelationsfunktionen (AKF) von $\left\langle {y_\nu  } \right\rangle$ und von $\left\langle {z_\nu  } \right\rangle$ vollständig übereinstimmen. Wählen Sie bitte bei mehreren Lösungen diejenige mit $|a_1| < |a_0|$.
+
*The coefficients&nbsp; $a_0$&nbsp; and&nbsp; $a_1$&nbsp; of&nbsp; $\text{Filter 2}$&nbsp; should be set so that the auto-correlation functions&nbsp; $\rm (ACFs)$&nbsp; of&nbsp; $\left\langle {y_\nu  } \right\rangle$&nbsp; and of&nbsp; $\left\langle {z_\nu  } \right\rangle$&nbsp; match exactly.&nbsp; If there are multiple solutions,&nbsp; please choose the one with&nbsp; $|a_1| < |a_0|$.
  
  
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Creation_of_Predefined_ACF_Properties|Creation of Predefined ACF Properties]].
''Hinweise:''
+
*The coefficients of&nbsp; $\text{Filter 1}$&nbsp; are denoted by&nbsp; $\alpha_0$,&nbsp; $\alpha_1$,&nbsp; $\alpha_2$&nbsp; ("alphas")&nbsp; in the questions.
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Erzeugung_vorgegebener_AKF-Eigenschaften|Erzeugung vorgegebener AKF-Eigenschaften]].
 
*Die Koeffizienten von $\text{Filter 1}$ werden in den Fragen mit $\alpha_0$, $\alpha_1$, $\alpha_2$ (&bdquo;alphas&rdquo;) bezeichnet.  
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind bezüglich $\text{Filter 1}$ zutreffend?
+
{Which statements are true regarding&nbsp; $\text{Filter 1}$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ Es handelt sich um ein nichtrekursives Filter.
+
+ It is a non-recursive filter.
+ Die Ordnung des Filters ist $M = 2$.
+
+ The order of the filter is&nbsp; $M = 2$.
- Der obere Filterkoeffizient  ist gleich $\alpha_0 =+1$.
+
- The upper filter coefficient is equal to&nbsp; $\alpha_0 =+1$.
  
  
{Berechnen Sie die Streuung der Ausgangsfolge $\left\langle {y_\nu  } \right\rangle$.
+
{Calculate the standard deviation of the output sequence&nbsp; $\left\langle {y_\nu  } \right\rangle$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y \ = \ $  { 0.913 3% }
 
$\sigma_y \ = \ $  { 0.913 3% }
  
  
{Berechnen Sie die AKF&ndash;Werte $\varphi_y(k \cdot T_{\rm A})$ für $k = 1$ und $k = 2$.
+
{Calculate the ACF values&nbsp; $\varphi_y(k \cdot T_{\rm A})$&nbsp; for&nbsp; $k = 1$&nbsp; and&nbsp; $k = 2$.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_y(T_{\rm A}) \ =  \ $ { 0. }
 
$\varphi_y(T_{\rm A}) \ =  \ $ { 0. }
Line 46: Line 44:
  
  
{Bestimmen Sie die Koeffizienten von $\text{Filter 2}$ so, dass $\left\langle {z_\nu  } \right\rangle$ und $\left\langle {y_\nu  } \right\rangle$ die gleiche AKF besitzen. Wie lautet der Quotient $a_1/a_0$ für $|a_1| < |a_0|$?
+
{Determine the coefficients of&nbsp; $\text{Filter 2}$&nbsp; such that&nbsp; $\left\langle {z_\nu  } \right\rangle$&nbsp; and&nbsp; $\left\langle {y_\nu  } \right\rangle$&nbsp; have the same ACF.&nbsp; What is the quotient&nbsp; $a_1/a_0$&nbsp; for&nbsp; $|a_1| < |a_0|$?
 
|type="{}"}
 
|type="{}"}
 
$a_1/a_0 \ =  \ $ { -0.515--0.485 }
 
$a_1/a_0 \ =  \ $ { -0.515--0.485 }
  
  
{Welche Aussagen treffen für die Wahrscheinlichkeitsdichtefunktionen zu?
+
{Which statements are true for the probability density functions?
 
|type="[]"}
 
|type="[]"}
- $f_y(y)$ und $f_z(z)$ sind identisch.
+
- $f_y(y)$&nbsp; and&nbsp; $f_z(z)$&nbsp; are identical.
+ $f_y(y)$ und $f_z(z)$ sind im Allgemeinen unterschiedlich.
+
+ $f_y(y)$&nbsp; and&nbsp; $f_z(z)$&nbsp; are different in general.
+ Bei Gaußscher Eingangsgröße wären $f_y(y)$ und $f_z(z)$ gleich.
+
+ With Gaussian input, &nbsp; $f_y(y)$&nbsp; and&nbsp; $f_z(z)$&nbsp; would be the same.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind somit <u>die beiden ersten Lösungsvorschläge</u>:
+
'''(1)'''&nbsp; <u>The first two solutions</u>&nbsp; are correct:
*Es ist ein nichtrekursives Filter zweiter Ordnung mit den Koeffizienten $\alpha_0 = -1$, $\alpha_1 = +0.707$ und $\alpha_2 = +1$.
+
*It is a second-order non-recursive filter with coefficients&nbsp; $\alpha_0 = -1$,&nbsp; $\alpha_1 = +0.707$&nbsp; and&nbsp; $\alpha_2 = +1$.
*Die Koeffizienten von $\text{Filter 1}$ werden hier mit $\alpha_0$, $\alpha_1$, $\alpha_2$ (&bdquo;alphas&rdquo;) bezeichnet.
+
*The coefficients of&nbsp; $\text{Filter 1}$&nbsp; are denoted here as&nbsp; $\alpha_0$,&nbsp; $\alpha_1$,&nbsp; $\alpha_2$&nbsp; ("alphas").
  
  
'''(2)'''&nbsp; Die Varianz der Ausgangswerte ist gleich dem AKF-Wert für $k = 0$. Für diesen erhält man:
+
 
 +
'''(2)'''&nbsp; The variance of the output values is equal to the ACF value for&nbsp; $k = 0$.&nbsp; For this one obtains:
 
:$$\varphi _y (0) = \sigma _x ^2  \cdot \left( {\alpha _0 ^2  + \alpha _1 ^2  + \alpha _2 ^2 } \right) = {1}/{3} \cdot \left( {1 + {1}/{2} + 1} \right) = 0.833.$$
 
:$$\varphi _y (0) = \sigma _x ^2  \cdot \left( {\alpha _0 ^2  + \alpha _1 ^2  + \alpha _2 ^2 } \right) = {1}/{3} \cdot \left( {1 + {1}/{2} + 1} \right) = 0.833.$$
  
Damit ergibt sich für die Streuung (bzw. den Effektivwert):
+
*This gives the standard deviation:
 
:$$\sigma _y  = \sqrt {\varphi _y (0)}  \hspace{0.15cm} \underline{= 0.913}.$$
 
:$$\sigma _y  = \sqrt {\varphi _y (0)}  \hspace{0.15cm} \underline{= 0.913}.$$
  
'''(3)'''&nbsp; Diese beiden AKF-Werte können wie folgt berechnet werden:
+
 
 +
 
 +
'''(3)'''&nbsp; These two ACF values can be calculated as follows:
 
:$$\varphi _y ( {T_{\rm A} } ) = \sigma _x ^2  \cdot \left( {\alpha _0  \cdot \alpha _1  + \alpha _1  \cdot \alpha _2 } \right) = {1}/{3} \cdot \left( { - 1 \cdot 0.707 + 0.707 \cdot 1} \right)  \hspace{0.15cm} \underline{= 0},$$
 
:$$\varphi _y ( {T_{\rm A} } ) = \sigma _x ^2  \cdot \left( {\alpha _0  \cdot \alpha _1  + \alpha _1  \cdot \alpha _2 } \right) = {1}/{3} \cdot \left( { - 1 \cdot 0.707 + 0.707 \cdot 1} \right)  \hspace{0.15cm} \underline{= 0},$$
 
:$$\varphi _y ( {2T_{\rm A} } ) = \sigma _x ^2  \cdot \left( {\alpha _0  \cdot \alpha _2 } \right) = -1/3\hspace{0.15cm} \underline{\approx  - 0.333}.$$
 
:$$\varphi _y ( {2T_{\rm A} } ) = \sigma _x ^2  \cdot \left( {\alpha _0  \cdot \alpha _2 } \right) = -1/3\hspace{0.15cm} \underline{\approx  - 0.333}.$$
  
'''(4)'''&nbsp; Da $\varphi _y ( {T_{\rm A} } )= 0$ ist, kann bei geeigneter Wahl von $a_0$ und $a_1$ erreicht werden, dass die AKF am Ausgang von $\text{Filter 2}$ identisch ist mit der in der Teilaufgabe (3) berechneten AKF. Mit $T_{\rm A}' = 2 \cdot T_{\rm A}$ gilt:
+
 
 +
 
 +
'''(4)'''&nbsp; Because of&nbsp; $\varphi _y ( {T_{\rm A} } )= 0$,&nbsp; if&nbsp; $a_0$&nbsp; and&nbsp; $a_1$&nbsp; are chosen appropriately,&nbsp; it is possible that the ACF at the output of&nbsp; $\text{Filter 2}$&nbsp; is identical to the ACF calculated in&nbsp; '''(3)'''.&nbsp;
 +
*With&nbsp; $T_{\rm A}\hspace{0.05cm}' = 2 \cdot T_{\rm A}$&nbsp; holds:
 
:$$\varphi _z (0) = {1}/{3} \cdot \left( {a_0 ^2  + a_1 ^2 } \right) = 0.833\quad  \Rightarrow \quad a_0 ^2  + a_1 ^2  = 2.5, $$
 
:$$\varphi _z (0) = {1}/{3} \cdot \left( {a_0 ^2  + a_1 ^2 } \right) = 0.833\quad  \Rightarrow \quad a_0 ^2  + a_1 ^2  = 2.5, $$
:$$\varphi _z( {T_A '} ) = {1}/{3}\left( {a_0  \cdot a_1 } \right) =  - {1}/{3}\quad \;\;\, \Rightarrow \quad a_0  \cdot a_1  =  - 1.$$
+
:$$\varphi _z( {T_{\rm A} \hspace{0.05cm}'} ) = {1}/{3}\left( {a_0  \cdot a_1 } \right) =  - {1}/{3}\quad \;\;\, \Rightarrow \quad a_0  \cdot a_1  =  - 1.$$
  
Mit der Hilfsgröße $H = a_0^2$ führt dies zu der Bestimmungsgleichung
+
*With the auxiliary quantity&nbsp; $H = a_0^2$&nbsp; this leads to the equation of determination:
 
:$$H + {1}/{H} = 2.5\quad  \Rightarrow \quad H^2  - 2.5 \cdot H + 1 = 0$$
 
:$$H + {1}/{H} = 2.5\quad  \Rightarrow \quad H^2  - 2.5 \cdot H + 1 = 0$$
 
:$$\Rightarrow \hspace{0.3cm}H_{1/2}  = {1}/{2} \cdot \left( {2.5 \pm \sqrt {2.5^2  - 4} } \right) = {1}/{2} \cdot \left( {2.5 \pm 1.5} \right).$$
 
:$$\Rightarrow \hspace{0.3cm}H_{1/2}  = {1}/{2} \cdot \left( {2.5 \pm \sqrt {2.5^2  - 4} } \right) = {1}/{2} \cdot \left( {2.5 \pm 1.5} \right).$$
  
Die beiden Lösungen sind $H_1 = 2$ und $H_2 = 1/2$. Daraus erhält man vier mögliche Lösungen:
+
*The two solutions are&nbsp; $H_1 = 2$&nbsp; and&nbsp; $H_2 = 1/2$.&nbsp; This gives four possible solutions:
 
:$$a_0  = \sqrt 2 ,\quad \;\;\, a_1  =  - {1}/{\sqrt 2 },
 
:$$a_0  = \sqrt 2 ,\quad \;\;\, a_1  =  - {1}/{\sqrt 2 },
 
\hspace{2cm} a_0  =  - \sqrt 2 ,\quad a_1  = {1}/{\sqrt 2 },$$
 
\hspace{2cm} a_0  =  - \sqrt 2 ,\quad a_1  = {1}/{\sqrt 2 },$$
Line 90: Line 94:
 
\hspace{2cm} a_0  =  - {1}/{\sqrt 2 },\quad a_1  = \sqrt 2 .$$
 
\hspace{2cm} a_0  =  - {1}/{\sqrt 2 },\quad a_1  = \sqrt 2 .$$
  
Bei den beiden letzten Lösungspaaren ist die Bedingung $|a_1| < |a_0|$ nicht erfüllt. Bei den oberen Gleichungen gilt dagegen in beiden Fällen:
+
*For the last two pairs of solutions, the condition&nbsp; $|a_1| < |a_0|$&nbsp; is not satisfied.&nbsp; On the other hand,&nbsp; for the upper equations,&nbsp; in both cases:
 
:$$ \hspace{0.15cm} \underline{a_1 /a_0  =  - 0.5}.$$
 
:$$ \hspace{0.15cm} \underline{a_1 /a_0  =  - 0.5}.$$
  
'''(5)'''&nbsp; Richtig sind  <u>die Lösungsvorschläge 2 und 3</u>:
+
 
*Im allgemeinen (auch bei gleichverteilter Eingangsgröße $x$) sind die Dichtefunktionen $f_y(y)$ und $f_z(z)$ unterschiedlich.  
+
 
*$f_z(z)$ ergibt sich aus der Faltung zweier verschieden breiter Rechtecke; sie ist also trapezförmig. Zur Berechnung von $f_y(y)$ müssen dagegen drei Rechtecke miteinander gefaltet werden.
+
'''(5)'''&nbsp; <u>The solutions 2 and 3</u> are correct:
*Bei Gaußscher Eingangsgröße $x$ sind auch $y$ und $z$ gaußverteilt, und wegen $m_y = m_z$ und $\sigma_y = \sigma_z$ gilt auch $f_z(z) = f_y(y)$.  
+
*In general&nbsp; $($even with equally distributed input variable&nbsp; $x)$&nbsp; the probability density functions&nbsp; $f_y(y)$&nbsp; and&nbsp; $f_z(z)$&nbsp; are different.
 +
*In this case,&nbsp; $f_z(z)$&nbsp; results from the convolution of two rectangles of different width;&nbsp; thus,&nbsp; it is trapezoidal.
 +
*To calculate&nbsp; $f_y(y)$,&nbsp; on the other hand,&nbsp; three rectangles would have to be folded together.
 +
*With Gaussian input&nbsp; $x$:&nbsp; &nbsp; $y$&nbsp; and&nbsp; $z$&nbsp; are also Gaussian distributed,&nbsp; and because of&nbsp; $m_y = m_z$&nbsp; and&nbsp; $\sigma_y = \sigma_z$,&nbsp; &nbsp; $f_z(z) = f_y(y)$&nbsp; is also valid.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^5.3 Filteranpassung an AKF^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.3 Filter Matching to ACF^]]

Latest revision as of 17:18, 17 February 2022

Two ACF–equivalent filters

We consider the two digital filters outlined:

  • The individual elements of the input sequence  $\left\langle {x_\nu } \right\rangle$  are in both cases statistically independent of each other and equally distributed between  $-1$  and  $+1$.
  • It follows directly for the mean and the variance:
$$m_x = 0,\quad \sigma _x^2 = {1}/{3}.$$
  • The delay times of  $\text{Filter 1}$  are equal to  $T_{\rm A} = 1 \hspace{0.05cm} \rm µ s$   in each case.  The delays of  $\text{Filter 2}$  are twice as long.
  • The coefficients  $a_0$  and  $a_1$  of  $\text{Filter 2}$  should be set so that the auto-correlation functions  $\rm (ACFs)$  of  $\left\langle {y_\nu } \right\rangle$  and of  $\left\langle {z_\nu } \right\rangle$  match exactly.  If there are multiple solutions,  please choose the one with  $|a_1| < |a_0|$.



Notes:

  • The exercise belongs to the chapter  Creation of Predefined ACF Properties.
  • The coefficients of  $\text{Filter 1}$  are denoted by  $\alpha_0$,  $\alpha_1$,  $\alpha_2$  ("alphas")  in the questions.


Questions

1

Which statements are true regarding  $\text{Filter 1}$? 

It is a non-recursive filter.
The order of the filter is  $M = 2$.
The upper filter coefficient is equal to  $\alpha_0 =+1$.

2

Calculate the standard deviation of the output sequence  $\left\langle {y_\nu } \right\rangle$.

$\sigma_y \ = \ $

3

Calculate the ACF values  $\varphi_y(k \cdot T_{\rm A})$  for  $k = 1$  and  $k = 2$.

$\varphi_y(T_{\rm A}) \ = \ $

$\varphi_y(2T_{\rm A}) \ = \ $

4

Determine the coefficients of  $\text{Filter 2}$  such that  $\left\langle {z_\nu } \right\rangle$  and  $\left\langle {y_\nu } \right\rangle$  have the same ACF.  What is the quotient  $a_1/a_0$  for  $|a_1| < |a_0|$?

$a_1/a_0 \ = \ $

5

Which statements are true for the probability density functions?

$f_y(y)$  and  $f_z(z)$  are identical.
$f_y(y)$  and  $f_z(z)$  are different in general.
With Gaussian input,   $f_y(y)$  and  $f_z(z)$  would be the same.


Solution

(1)  The first two solutions  are correct:

  • It is a second-order non-recursive filter with coefficients  $\alpha_0 = -1$,  $\alpha_1 = +0.707$  and  $\alpha_2 = +1$.
  • The coefficients of  $\text{Filter 1}$  are denoted here as  $\alpha_0$,  $\alpha_1$,  $\alpha_2$  ("alphas").


(2)  The variance of the output values is equal to the ACF value for  $k = 0$.  For this one obtains:

$$\varphi _y (0) = \sigma _x ^2 \cdot \left( {\alpha _0 ^2 + \alpha _1 ^2 + \alpha _2 ^2 } \right) = {1}/{3} \cdot \left( {1 + {1}/{2} + 1} \right) = 0.833.$$
  • This gives the standard deviation:
$$\sigma _y = \sqrt {\varphi _y (0)} \hspace{0.15cm} \underline{= 0.913}.$$


(3)  These two ACF values can be calculated as follows:

$$\varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot \left( {\alpha _0 \cdot \alpha _1 + \alpha _1 \cdot \alpha _2 } \right) = {1}/{3} \cdot \left( { - 1 \cdot 0.707 + 0.707 \cdot 1} \right) \hspace{0.15cm} \underline{= 0},$$
$$\varphi _y ( {2T_{\rm A} } ) = \sigma _x ^2 \cdot \left( {\alpha _0 \cdot \alpha _2 } \right) = -1/3\hspace{0.15cm} \underline{\approx - 0.333}.$$


(4)  Because of  $\varphi _y ( {T_{\rm A} } )= 0$,  if  $a_0$  and  $a_1$  are chosen appropriately,  it is possible that the ACF at the output of  $\text{Filter 2}$  is identical to the ACF calculated in  (3)

  • With  $T_{\rm A}\hspace{0.05cm}' = 2 \cdot T_{\rm A}$  holds:
$$\varphi _z (0) = {1}/{3} \cdot \left( {a_0 ^2 + a_1 ^2 } \right) = 0.833\quad \Rightarrow \quad a_0 ^2 + a_1 ^2 = 2.5, $$
$$\varphi _z( {T_{\rm A} \hspace{0.05cm}'} ) = {1}/{3}\left( {a_0 \cdot a_1 } \right) = - {1}/{3}\quad \;\;\, \Rightarrow \quad a_0 \cdot a_1 = - 1.$$
  • With the auxiliary quantity  $H = a_0^2$  this leads to the equation of determination:
$$H + {1}/{H} = 2.5\quad \Rightarrow \quad H^2 - 2.5 \cdot H + 1 = 0$$
$$\Rightarrow \hspace{0.3cm}H_{1/2} = {1}/{2} \cdot \left( {2.5 \pm \sqrt {2.5^2 - 4} } \right) = {1}/{2} \cdot \left( {2.5 \pm 1.5} \right).$$
  • The two solutions are  $H_1 = 2$  and  $H_2 = 1/2$.  This gives four possible solutions:
$$a_0 = \sqrt 2 ,\quad \;\;\, a_1 = - {1}/{\sqrt 2 }, \hspace{2cm} a_0 = - \sqrt 2 ,\quad a_1 = {1}/{\sqrt 2 },$$
$$a_0 = {1}/{\sqrt 2 },\quad \;\,\, a_1 = - \sqrt 2 , \hspace{2cm} a_0 = - {1}/{\sqrt 2 },\quad a_1 = \sqrt 2 .$$
  • For the last two pairs of solutions, the condition  $|a_1| < |a_0|$  is not satisfied.  On the other hand,  for the upper equations,  in both cases:
$$ \hspace{0.15cm} \underline{a_1 /a_0 = - 0.5}.$$


(5)  The solutions 2 and 3 are correct:

  • In general  $($even with equally distributed input variable  $x)$  the probability density functions  $f_y(y)$  and  $f_z(z)$  are different.
  • In this case,  $f_z(z)$  results from the convolution of two rectangles of different width;  thus,  it is trapezoidal.
  • To calculate  $f_y(y)$,  on the other hand,  three rectangles would have to be folded together.
  • With Gaussian input  $x$:    $y$  and  $z$  are also Gaussian distributed,  and because of  $m_y = m_z$  and  $\sigma_y = \sigma_z$,    $f_z(z) = f_y(y)$  is also valid.