Difference between revisions of "Aufgaben:Exercise 5.5Z: About the Rake Receiver"

From LNTwww
Line 83: Line 83:
  
  
'''(3)'''  Wir setzen zunächst vereinbarungsgemäß  $K = 1$.  
+
'''(3)'''  We first set  $K = 1$ as agreed.  
*Insgesamt kommt man über vier Wege von  $s(t)$  zum Ausgangssignal  $b(t)$.  
+
*Altogether we get from  $s(t)$  to the output signal  $b(t)$ via four paths.  
*Um die vorgegebene  $h_{\rm KR}(t)$–Gleichung zu erfüllen, muss entweder  $τ_0 = 0$  gelten oder  $τ_1 = 0$.  Mit  $τ_0 = 0$  erhält man für die Impulsantwort:
+
*To satisfy the given  $h_{\rm KR}(t)$ equation, either  $τ_0 = 0$  must hold or  $τ_1 = 0$.  With  $τ_0 = 0$  we obtain for the impulse response:
 
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
*Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann  $τ_1 = τ$  gewählt werden.  Mit  $h_0 = 0.6$  und  $h_1 = 0.4$  erhält man dann  $A_0 ≠ A_2$:
+
*To be able to focus the "main energy" on a time point,  $τ_1 = τ$  would then have to be chosen.  With  $h_0 = 0.6$  and  $h_1 = 0.4$,  we then obtain  $A_0 ≠ A_2$:
 
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
*Dagegen ergibt sich mit  $h_0 = 0.6$,  $h_1 = 0.4$,  $τ_0 = τ$  und  $τ_1 = 0$:
+
*In contrast, with  $h_0 = 0.6$,  $h_1 = 0.4$,  $τ_0 = τ$  and  $τ_1 = 0$:
 
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
 
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
*Hier ist die Zusatzbedingung  $A_0 = A_2$  erfüllt.  Somit lautet das gesuchte Ergebnis:
+
*Here, the additional condition  $A_0 = A_2$  is satisfied.  Thus, the result we are looking for is:
 
:$$ \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
 
:$$ \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
  
  
  
'''(4)'''  Für den Normierungsfaktor muss gelten:
+
'''(4)'''  The following must apply to the normalization factor:
 
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
 
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
*Damit erhält man für die gemeinsame Impulsantwort  $($es gilt $0.24/0.52 = 6/13)$:
+
*This gives for the common impulse response  $($it holds $0.24/0.52 = 6/13)$:
 
:$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
:$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  
  
  
[[File:P_ID1902__Mod_Z_5_5e.png|right|frame|Signale zur Verdeutlichung des Rake–Empfängers]]
+
[[File:P_ID1902__Mod_Z_5_5e.png|right|frame|Signals to illustrate the rake receiver]]
'''(5)'''&nbsp; Richtig sind die <u>Aussagen 1 und 4</u>, wie die Grafik zeigt:
+
'''(5)'''&nbsp; <u>Statements 1 and 4</u> are correct, as shown in the diagram:
*Für das Empfangssignal&nbsp; $r(t)$&nbsp; und für das Rake–Ausgangssignal&nbsp; $b(t)$&nbsp; gilt:
+
*For the received signal&nbsp; $r(t)$&nbsp; and for the rake output signal&nbsp; $b(t)$&nbsp; holds:
 
:$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm &micro; s})\hspace{0.05cm},$$  
 
:$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm &micro; s})\hspace{0.05cm},$$  
 
:$$b(t)  = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm &micro; s}) + \frac{6}{13} \cdot s (t - 2\,{\rm &micro; s}) \hspace{0.05cm}.$$
 
:$$b(t)  = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm &micro; s}) + \frac{6}{13} \cdot s (t - 2\,{\rm &micro; s}) \hspace{0.05cm}.$$
*Die Überhöhung des Ausgangssignals &nbsp; ⇒  &nbsp; $b(t) > 1$&nbsp; ist auf den Normierungsfaktor&nbsp; $K = 25/13$&nbsp; zurückzuführen.
+
*The overshoot of the output signal &nbsp; ⇒  &nbsp; $b(t) > 1$&nbsp; is due to the normalization factor&nbsp; $K = 25/13$.&nbsp;  
*Mit&nbsp; $K = 1$&nbsp; wäre der Maximalwert von&nbsp; $b(t)$&nbsp; tatsächlich&nbsp; $1$.
+
*With&nbsp; $K = 1$,&nbsp; the maximum value of&nbsp; $b(t)$&nbsp; would actually be&nbsp; $1$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 14:16, 13 December 2021

Two-way channel
& rake KORREKTUR: two-way channel, rake receiver

The diagram shows a two-way channel  (yellow background).  The corresponding descriptive equation is:

$$ r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$

Let the delay on the secondary path be  $τ = 1 \ \rm µ s$.  Drawn below is the structure of a rake receiver  (green background)  with general coefficients  $K$,  $h_0$,  $h_1$,  $τ_0$  and  $τ_1$.

The purpose of the rake receiver is to combine the energy of the two signal paths, making the decision more reliable. 

The combined impulse response of the channel and the rake receiver can be expressed in the form

$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$

but only if the rake coefficients  $h_0$,  $h_1$,  $τ_0$  and  $τ_1$  are appropriately chosen.  The main part of  $h_{\rm KR}(t)$  is supposed to be at  $t = τ$. 

The constant  $K$  is to be chosen so that the amplitude of the main path  $A_1 = 1$ :

$$K= \frac{1}{h_0^2 + h_1^2}.$$

Apart from the rake parameters, the signals  $r(t)$  and  $b(t)$ are sought when $s(t)$  is a rectangle of height  $s_0 = 1$  and width  $T = \ \rm 5 µ s$. 





Notes:


Questions

1

Which statements are valid for the channel impulse response  $h_{\rm K}(t)$?

$h_{\rm K}(t)$  consists of two Dirac functions.
$h_{\rm K}(t)$  is complex-valued.
$h_{\rm K}(t)$  is a function periodic with delay time  $\tau$. 

2

Which statements are true for the channel frequency response  $H_{\rm K}(f)$?

 $H_{\rm K}(f = 0) = 2$ is true.
$H_{\rm K}(f)$  is complex-valued.
$|H_{\rm K}(f)|$  is a function periodic with frequency  $1/τ$. 

3

Set  $K = 1$,  $h_0 = 0.6$  and  $h_1 = 0.4$.  Determine the delays  $τ_0$  and  $τ_1$ so that the  $h_{\rm KR}(t)$ equation is satisfied with  $A_0 = A_2$. 

$τ_0 \ = \ $

$\ \rm µ s$
$τ_1 \ = \ $

$\ \rm µ s$

4

What value should be chosen for the constant  $K$? 

$K \ = \ $

5

Which statements are valid for the signals  $r(t)$  and  $b(t)$?

The maximum value of  $r(t)$  is  $1$.
The width of  $r(t)$  is  $7 \ µ s$.
The maximum value of  $b(t)$  is  $1$.
The width of  $b(t)$  is  $7 \ µ s$.


Solution

(1)  Solution 1 is correct:

  • The impulse response  $h_{\rm K}(t)$  is obtained as the received signal  $r(t)$ when there is a dirac pulse at the input   ⇒   $s(t) = δ(t)$.  It follows that:
$$ h_(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$


(2)  Solutions 2 and 3 are correct:

  • By definition, the channel frequency response  $H_{\rm K}(f)$  is the Fourier transform of the impulse response  $h_{\rm K}(t)$.  With the shift theorem this results in:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
  • Accordingly, the first proposed solution is incorrect in contrast to the other two:   $H_{\rm K}(f)$ is complex-valued and the magnitude is periodic with  $1/τ$, as the following calculation shows:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
  • For  $f = 0$,   $|H_{\rm K}(f)| = 1$.  This value is repeated in the respective frequency spacing  $1/τ$. 


(3)  We first set  $K = 1$ as agreed.

  • Altogether we get from  $s(t)$  to the output signal  $b(t)$ via four paths.
  • To satisfy the given  $h_{\rm KR}(t)$ equation, either  $τ_0 = 0$  must hold or  $τ_1 = 0$.  With  $τ_0 = 0$  we obtain for the impulse response:
$$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
  • To be able to focus the "main energy" on a time point,  $τ_1 = τ$  would then have to be chosen.  With  $h_0 = 0.6$  and  $h_1 = 0.4$,  we then obtain  $A_0 ≠ A_2$:
$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  • In contrast, with  $h_0 = 0.6$,  $h_1 = 0.4$,  $τ_0 = τ$  and  $τ_1 = 0$:
$$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
  • Here, the additional condition  $A_0 = A_2$  is satisfied.  Thus, the result we are looking for is:
$$ \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$


(4)  The following must apply to the normalization factor:

$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
  • This gives for the common impulse response  $($it holds $0.24/0.52 = 6/13)$:
$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$


Signals to illustrate the rake receiver

(5)  Statements 1 and 4 are correct, as shown in the diagram:

  • For the received signal  $r(t)$  and for the rake output signal  $b(t)$  holds:
$$r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm µ s})\hspace{0.05cm},$$
$$b(t) = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm µ s}) + \frac{6}{13} \cdot s (t - 2\,{\rm µ s}) \hspace{0.05cm}.$$
  • The overshoot of the output signal   ⇒   $b(t) > 1$  is due to the normalization factor  $K = 25/13$. 
  • With  $K = 1$,  the maximum value of  $b(t)$  would actually be  $1$.