Difference between revisions of "Aufgaben:Exercise 5.5Z: About the Rake Receiver"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/BER der PN–Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation
 
}}
 
}}
  
[[File:P_ID1888__Mod_Z_5_5.png|right|frame|Zweiwegekanal, RAKE–Empfänger]]
+
[[File:EN_Mod_Z_5_5.png|right|frame|Two-way channel <br>& rake receiver]]
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:
+
The diagram shows a two-way channel&nbsp; (yellow background).&nbsp; The corresponding descriptive equation is:
 
:$$ r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
 
:$$ r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
Die Verzögerung auf dem Nebenpfad sei $τ = 1 \ \rm μs$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten $K$, $h_0$, $h_1$, $τ_0$ und $τ_1$.
+
Let the delay on the secondary path be &nbsp;$τ = 1 \ \rm &micro; s$.&nbsp;
  
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form
+
Drawn below is the structure of a rake receiver&nbsp; (green background)&nbsp; with general coefficients &nbsp;$K$, &nbsp;$h_0$, &nbsp;$h_1$, &nbsp;$τ_0$&nbsp; and &nbsp;$τ_1$.
 +
 
 +
*The purpose of the rake receiver is to combine the energy of the two signal paths,&nbsp; making the decision more reliable.&nbsp;
 +
 
 +
*The combined impulse response of the channel&nbsp; (German:&nbsp; "Kanal" &nbsp; &rArr; &nbsp; subscript "K")&nbsp; and the rake receiver can be expressed in the form
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten $h_0$, $h_1$, $τ_0$ und $τ_1$ geeignet gewählt werden. Der Hauptanteil von $h_{\rm KR}(t)$ soll bei $t = τ$ liegen.
+
:but only if the rake coefficients &nbsp;$h_0$, &nbsp;$h_1$, &nbsp;$τ_0$&nbsp; and &nbsp;$τ_1$&nbsp; are appropriately chosen.&nbsp;
 +
*The main part of &nbsp;$h_{\rm KR}(t)$&nbsp; is supposed to be at &nbsp;$t = τ$.&nbsp;
 +
*The constant &nbsp;$K$&nbsp; is to be chosen so that the amplitude of the main path &nbsp;$A_1 = 1$&nbsp;:
 +
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
 +
Apart from the rake parameters,&nbsp; the signals &nbsp;$r(t)$&nbsp; and &nbsp;$b(t)$ are sought when&nbsp;$s(t)$&nbsp; is a rectangle of height &nbsp;$s_0 = 1$&nbsp; and width &nbsp;$T = \ \rm 5 &micro; s$.&nbsp;
 +
 
  
Die Konstante $K$ ist so zu wählen, dass die Amplitude des Hauptpfads $A_1 = 1$ ist:
 
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
 
Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale $r(t)$ und $b(t)$, wenn $s(t)$ ein Rechteck der Höhe $s_0 = 1$ und der Breite $T = \ \rm 5 μs$ ist.
 
  
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN%E2%80%93Modulation|Fehlerwahrscheinlichkeit der PN-Modulation]].
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation|Error Probability of Direct-Sequence Spread Spectrum Modulation]].
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation#Prinzip_des_RAKE.E2.80.93Empf.C3.A4ngers |Prinzip des RAKE-Empfängers]].  
+
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation#Principle_of_the_rake_receiver |Principle of the rake receiver]].  
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die Kanalimpulsantwort $h_{\rm K}(t)$?
+
{Which statements are valid for the channel impulse response &nbsp;$h_{\rm K}(t)$?
 
|type="[]"}
 
|type="[]"}
+ $h_{\rm K}(t)$ besteht aus zwei Diracfunktionen.
+
+ $h_{\rm K}(t)$&nbsp; consists of two Dirac delta functions.
- $h_{\rm K}(t)$ ist komplexwertig.
+
- $h_{\rm K}(t)$&nbsp; is complex-valued.
- $h_{\rm K}(t)$ ist eine mit der Verzögerungszeit τ periodische Funktion.
+
- $h_{\rm K}(t)$&nbsp; is a function periodic with delay time &nbsp;$\tau$.&nbsp;
  
{Welche Aussagen gelten für den Kanalfrequenzgang $H_{\rm K}(f)$?
+
{Which statements are true for the channel frequency response &nbsp;$H_{\rm K}(f)$?
 
|type="[]"}
 
|type="[]"}
- Es gilt $H_{\rm K}(f = 0) = 2$.
+
- $H_{\rm K}(f = 0) = 2$&nbsp; is true.
+ $H_{\rm K}(f)$ ist komplexwertig.
+
+ $H_{\rm K}(f)$&nbsp; is complex-valued.
+ $|H_{\rm K}(f)|$ ist eine mit der Frequenz $1/τ$ periodische Funktion.
+
+ $|H_{\rm K}(f)|$&nbsp; is a function periodic with frequency &nbsp;$1/τ$.&nbsp;
  
{Setzen Sie $K = 1$, $h_0 = 0.6$ und $h_1 = 0.4$. Bestimmen Sie die Verzögerungen $τ_0$ und $τ_1$, damit die $h_{\rm KR}(t)$–Gleichung mit $A_0 = A_2$ erfüllt wird.
+
{Set &nbsp;$K = 1$, &nbsp;$h_0 = 0.6$&nbsp; and &nbsp;$h_1 = 0.4$.&nbsp; Determine the delays &nbsp;$τ_0$&nbsp; and &nbsp;$τ_1$ so that the &nbsp;$h_{\rm KR}(t)$ equation is satisfied with &nbsp;$A_0 = A_2$.&nbsp;
 
|type="{}"}
 
|type="{}"}
$τ_0 \ = \ $  { 1 3% } $\ \rm μs$
+
$τ_0 \ = \ $  { 1 3% } $\ \rm &micro; s$
$τ_1 \ = \ $ { 0. } $\ \rm μs$
+
$τ_1 \ = \ $ { 0. } $\ \rm &micro; s$
  
{Welcher Wert ist für die Konstante $K$ zu wählen?
+
{What value should be chosen for the constant &nbsp;$K$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$K  \ = \ $ { 1.923 3% }  
 
$K  \ = \ $ { 1.923 3% }  
  
{Welche Aussagen gelten für die Signale $r(t)$ und $b(t)$?
+
{Which statements are valid for the signals &nbsp;$r(t)$&nbsp; and &nbsp;$b(t)$?
 
|type="[]"}
 
|type="[]"}
+ Der Maximalwert von $r(t)$ ist $1$.
+
+ The maximum value of &nbsp;$r(t)$&nbsp; is &nbsp;$1$.
- Die Breite von $r(t)$ ist $7 \ \rm μs$.
+
- The width of &nbsp;$r(t)$&nbsp; is &nbsp;$7 \ &micro; s$.
- Der Maximalwert von $b(t)$ ist $1$.
+
- The maximum value of &nbsp;$b(t)$&nbsp; is &nbsp;$1$.
+ Die Breite von $b(t)$ ist $7 \ \rm μs$.
+
+ The width of &nbsp;$b(t)$&nbsp; is &nbsp;$7 \ &micro; s$.
  
  
Line 59: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Impulsantwort $h_K(t)$ ergibt sich als das Empfangssignal $r(t)$, wenn am Eingang ein Diracimpuls anliegt ⇒ $s(t) = δ(t)$. Daraus folgt
+
'''(1)'''&nbsp; <u>Solution 1</u> is correct:
$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
+
*The impulse response&nbsp; $h_{\rm K}(t)$&nbsp; is obtained as the received signal&nbsp; $r(t)$&nbsp; when there is a Dirac delta pulse at the input &nbsp; &nbsp;  $s(t) = δ(t)$.&nbsp; It follows that:
Richtig ist also der Lösungsvorschlag 1.
+
:$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>Solutions 2 and 3</u>&nbsp; are correct:
 +
*By definition,&nbsp; the channel frequency response&nbsp; $H_{\rm K}(f)$&nbsp; is the Fourier transform of the impulse response&nbsp; $h_{\rm K}(t)$.&nbsp; With the shift theorem this results in:
 +
:$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
 +
*Accordingly,&nbsp; the first proposed solution is incorrect in contrast to the other two:
 +
#&nbsp;  $H_{\rm K}(f)$ is complex-valued and
 +
#&nbsp;the magnitude is periodic with&nbsp; $1/τ$,&nbsp; as the following calculation shows:
 +
:$$|H_{\rm K}(f)|^2  =  \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] +  2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau).$$
 +
*For&nbsp; $f = 0$,&nbsp;&nbsp; $|H_{\rm K}(f)| = 1$.&nbsp; This value is repeated in the respective frequency spacing&nbsp; $1/τ$.&nbsp;
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; We first set&nbsp; $K = 1$ as agreed.
 +
*Altogether we get from&nbsp; $s(t)$&nbsp; to the output signal&nbsp; $b(t)$ via four paths.
 +
*To satisfy the given&nbsp; $h_{\rm KR}(t)$ equation, either&nbsp; $τ_0 = 0$&nbsp; must hold or&nbsp; $τ_1 = 0$.&nbsp; With&nbsp; $τ_0 = 0$&nbsp; we obtain for the impulse response:
 +
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 +
*To be able to focus the&nbsp; "main energy"&nbsp; at a certain time point,&nbsp; $τ_1 = τ$&nbsp; would have to be chosen.&nbsp;
 +
* With&nbsp; $h_0 = 0.6$&nbsp; and&nbsp; $h_1 = 0.4$,&nbsp; we then obtain&nbsp; $A_0 ≠ A_2$:
 +
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 +
*In contrast, with&nbsp; $h_0 = 0.6$,&nbsp; $h_1 = 0.4$,&nbsp; $τ_0 = τ$&nbsp; and&nbsp; $τ_1 = 0$:
 +
:$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
 +
*Here,&nbsp; the additional condition&nbsp; $A_0 = A_2$&nbsp; is satisfied.&nbsp; Thus,&nbsp; the result we are looking for is:
 +
:$$ \underline{\tau_0 = \tau = 1\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
 +
 
  
'''2.''' Der Kanalfrequenzgang $H_K(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_K(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
 
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
 
Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen: $H_K(f)$ ist komplexwertig und der Betrag ist periodisch mit 1/τ, wie die nachfolgende Rechnung zeigt:
 
$$|H_{\rm K}(f)|^2  =  \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =$$
 
$$ =  \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] +$$
 
$$  +  2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
 
Für f = 0 ist $|H_K(f)| = 1$. Im jeweiligen Frequenzabstand 1/τ wiederholt sich dieser Wert.
 
  
'''3.''' Wir setzen zunächst vereinbarungsgemäß K = 1. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{KR}(t)$–Gleichung zu erfüllen, muss entweder $τ_0 = 0$ gelten oder $τ_1 = 0$. Mit $τ_0 = 0$ erhält man für die Impulsantwort:
+
'''(4)'''&nbsp; The following must apply to the normalization factor:
$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +$$
+
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
$$ +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
+
*This gives for the common impulse response&nbsp; $($it holds&nbsp; $0.24/0.52 = 6/13)$:
Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $τ_1 = τ$ gewählt werden. Mit $h_0 = 0.6$ und $h_1 = 0.4$ erhält man dann $A_0 ≠ A_2$:
+
:$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
Dagegen ergibt sich mit $h_0 = 0.6$, $h_1 = 0.4$, $τ_0 = τ$ und $τ_1 = 0$:
 
$$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +$$
 
$$ +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=$$
 
$$ =  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
 
Hier ist die Zusatzbedingung $A_0 = A_2$ erfüllt. Somit lautet das gesuchte Ergebnis:
 
$$ \underline{\tau_0 = \tau = 1\,{\rm \mu s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
 
  
'''4.''' Für den Normierungsfaktor muss gelten:
 
$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
 
Damit erhält man für die gemeinsame Impulsantwort (es gilt 0.24/0.52 = 6/13):
 
$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
  
'''5.''' Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt:
 
$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
 
$$b(t)  = \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$
 
Richtig sind die Aussagen 1 und 4, wie die folgende Grafik zeigt. Die Überhöhung des Ausgangssignals  ⇒  $b(t) > 1$ ist auf den Normierungsfaktor K = 25/13 zurückzuführen. Mit K = 1 wäre der Maximalwert von $b(t)$ tatsächlich 1.
 
  
[[File:P_ID1902__Mod_Z_5_5e.png]]
+
[[File:P_ID1902__Mod_Z_5_5e.png|right|frame|Signals to illustrate the rake receiver]]
 +
'''(5)'''&nbsp; <u>Statements 1 and 4</u> are correct, as shown in the diagram:
 +
*For the received signal&nbsp; $r(t)$&nbsp;  holds:
 +
:$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm &micro; s})\hspace{0.05cm},$$
 +
*and for the rake output signal&nbsp; $b(t)$:
 +
:$$b(t)  = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm &micro; s}) + \frac{6}{13} \cdot s (t - 2\,{\rm &micro; s}) \hspace{0.05cm}.$$
 +
*The overshoot of the output signal  &nbsp; ⇒  &nbsp; $b(t) > 1$&nbsp; is due to the normalization factor&nbsp; $K = 25/13$.&nbsp;
 +
*With&nbsp; $K = 1$,&nbsp; the maximum value of&nbsp; $b(t)$&nbsp; would actually be&nbsp; $1$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 101: Line 118:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.4 BER der PN–Modulation^]]
+
[[Category:Modulation Methods: Exercises|^5.4 BER of the PN Modulation^]]

Latest revision as of 17:03, 7 February 2023

Two-way channel
& rake receiver

The diagram shows a two-way channel  (yellow background).  The corresponding descriptive equation is:

$$ r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$

Let the delay on the secondary path be  $τ = 1 \ \rm µ s$. 

Drawn below is the structure of a rake receiver  (green background)  with general coefficients  $K$,  $h_0$,  $h_1$,  $τ_0$  and  $τ_1$.

  • The purpose of the rake receiver is to combine the energy of the two signal paths,  making the decision more reliable. 
  • The combined impulse response of the channel  (German:  "Kanal"   ⇒   subscript "K")  and the rake receiver can be expressed in the form
$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
but only if the rake coefficients  $h_0$,  $h_1$,  $τ_0$  and  $τ_1$  are appropriately chosen. 
  • The main part of  $h_{\rm KR}(t)$  is supposed to be at  $t = τ$. 
  • The constant  $K$  is to be chosen so that the amplitude of the main path  $A_1 = 1$ :
$$K= \frac{1}{h_0^2 + h_1^2}.$$

Apart from the rake parameters,  the signals  $r(t)$  and  $b(t)$ are sought when $s(t)$  is a rectangle of height  $s_0 = 1$  and width  $T = \ \rm 5 µ s$. 



Notes:


Questions

1

Which statements are valid for the channel impulse response  $h_{\rm K}(t)$?

$h_{\rm K}(t)$  consists of two Dirac delta functions.
$h_{\rm K}(t)$  is complex-valued.
$h_{\rm K}(t)$  is a function periodic with delay time  $\tau$. 

2

Which statements are true for the channel frequency response  $H_{\rm K}(f)$?

$H_{\rm K}(f = 0) = 2$  is true.
$H_{\rm K}(f)$  is complex-valued.
$|H_{\rm K}(f)|$  is a function periodic with frequency  $1/τ$. 

3

Set  $K = 1$,  $h_0 = 0.6$  and  $h_1 = 0.4$.  Determine the delays  $τ_0$  and  $τ_1$ so that the  $h_{\rm KR}(t)$ equation is satisfied with  $A_0 = A_2$. 

$τ_0 \ = \ $

$\ \rm µ s$
$τ_1 \ = \ $

$\ \rm µ s$

4

What value should be chosen for the constant  $K$? 

$K \ = \ $

5

Which statements are valid for the signals  $r(t)$  and  $b(t)$?

The maximum value of  $r(t)$  is  $1$.
The width of  $r(t)$  is  $7 \ µ s$.
The maximum value of  $b(t)$  is  $1$.
The width of  $b(t)$  is  $7 \ µ s$.


Solution

(1)  Solution 1 is correct:

  • The impulse response  $h_{\rm K}(t)$  is obtained as the received signal  $r(t)$  when there is a Dirac delta pulse at the input   ⇒   $s(t) = δ(t)$.  It follows that:
$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$


(2)  Solutions 2 and 3  are correct:

  • By definition,  the channel frequency response  $H_{\rm K}(f)$  is the Fourier transform of the impulse response  $h_{\rm K}(t)$.  With the shift theorem this results in:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
  • Accordingly,  the first proposed solution is incorrect in contrast to the other two:
  1.   $H_{\rm K}(f)$ is complex-valued and
  2.  the magnitude is periodic with  $1/τ$,  as the following calculation shows:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau).$$
  • For  $f = 0$,   $|H_{\rm K}(f)| = 1$.  This value is repeated in the respective frequency spacing  $1/τ$. 



(3)  We first set  $K = 1$ as agreed.

  • Altogether we get from  $s(t)$  to the output signal  $b(t)$ via four paths.
  • To satisfy the given  $h_{\rm KR}(t)$ equation, either  $τ_0 = 0$  must hold or  $τ_1 = 0$.  With  $τ_0 = 0$  we obtain for the impulse response:
$$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
  • To be able to focus the  "main energy"  at a certain time point,  $τ_1 = τ$  would have to be chosen. 
  • With  $h_0 = 0.6$  and  $h_1 = 0.4$,  we then obtain  $A_0 ≠ A_2$:
$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  • In contrast, with  $h_0 = 0.6$,  $h_1 = 0.4$,  $τ_0 = τ$  and  $τ_1 = 0$:
$$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
  • Here,  the additional condition  $A_0 = A_2$  is satisfied.  Thus,  the result we are looking for is:
$$ \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$


(4)  The following must apply to the normalization factor:

$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
  • This gives for the common impulse response  $($it holds  $0.24/0.52 = 6/13)$:
$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$


Signals to illustrate the rake receiver

(5)  Statements 1 and 4 are correct, as shown in the diagram:

  • For the received signal  $r(t)$  holds:
$$r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm µ s})\hspace{0.05cm},$$
  • and for the rake output signal  $b(t)$:
$$b(t) = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm µ s}) + \frac{6}{13} \cdot s (t - 2\,{\rm µ s}) \hspace{0.05cm}.$$
  • The overshoot of the output signal   ⇒   $b(t) > 1$  is due to the normalization factor  $K = 25/13$. 
  • With  $K = 1$,  the maximum value of  $b(t)$  would actually be  $1$.