Difference between revisions of "Aufgaben:Exercise 5.6: Error Correlation Duration"

From LNTwww
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Bündelfehlerkanäle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Burst_Error_Channels}}
  
[[File:P_ID1842__Dig_A_5_6.png|right|frame|Fehlerkorrelationsfunktion beim GE–Modell]]
+
[[File:P_ID1842__Dig_A_5_6.png|right|frame|Error correlation function of the GE model]]
Die Grafik zeigt die Fehlerkorrelationsfunktion (FKF) des Gilbert–Elliott–Modells mit den Parametern
+
The graph shows the ''error correlation function''  (ECF) of the ''Gilbert–Elliott model''  with the parameters
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
\hspace{0.2cm}p_{\rm B} = 0.1,$$
+
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
:$$ {\rm Pr}(\rm
+
{\rm Pr}(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \
 
G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \
 
\hspace{-0.1cm}  0.1, \hspace{0.2cm} {\rm Pr}(\rm
 
\hspace{-0.1cm}  0.1, \hspace{0.2cm} {\rm Pr}(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$
  
in logarithmierter Darstellung.
+
in logarithmic representation.
  
Dieses Modell wird in der Aufgabe [[ Aufgabe Z5.6]] ausführlich behandelt. Insbesondere wird in dieser Aufgabe auch die Fehlerkorrelationsfunktion (FKF) berechnet. Mit den Hilfsgrößen
+
This model is discussed in detail in  [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]].  In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
\cdot (p_{\rm M}- p_{\rm
 
\cdot (p_{\rm M}- p_{\rm
Line 21: Line 21:
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
  
 +
it can be written for:
 +
:$$\varphi_{e}(k) =
 +
\left\{ \begin{array}{c} p_{\rm M} \\
 +
p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad
 +
\begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0  \hspace{0.05cm},
 +
\\  f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
  
 +
This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition:
 +
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 +
}^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm
 +
M}^2 \big]\hspace{0.05cm}.$$
  
===Fragebogen===
+
The reference value&nbsp; $\varphi_{e0}$&nbsp; is obtained by <i>extrapolation</i>&nbsp; of the error correlation function to the point&nbsp; $k = 0$. If, as here, the ECF curve is given analytically,&nbsp; $\varphi_{e0}$&nbsp; can also be calculated by inserting the value&nbsp; $k = 0$&nbsp; into the equation which is actually only valid for&nbsp; $k > 0$.&nbsp;
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Notes:''
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels| "Burst Error Channels"]].
 +
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Error_correlation_function_of_the_Gilbert-Elliott_model|"Error correlation function of the Gilbert-Elliott model"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Which ECF value is exactly valid for&nbsp; $k = 0$?
|type="[]"}
+
|type="{}"}
+ correct
+
$\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{-2}$
- false
+
 
 +
{What is the value extrapolated from the given ECF for&nbsp; $k = 0$?
 +
|type="{}"}
 +
$\varphi_{e0} \ = \ ${ 0.091 3% } $\ \cdot 10^{-2}$
 +
 
 +
{What result is obtained for the error correlation duration&nbsp; $D_{\rm K}$&nbsp; with the quantities&nbsp; $A$&nbsp; and&nbsp; $B$ defined in front?
 +
|type="()"}
 +
- $D_{\rm K} = A \cdot B$,
 +
- $D_{\rm K} = 1/A \, - B$,
 +
+ $D_{\rm K} = 1/B \, -1$.
  
{Input-Box Frage
+
{What is the correlation duration for the GE model at hand?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$D_{\rm K} \ = \ ${ 8.091 3% }
 +
 
 +
{Which statements are valid regarding the correlation duration&nbsp; $D_{\rm K}$&nbsp; of the GE model? Note the logarithmic ordinate for your answer.
 +
|type="[]"}
 +
+ $D_{\rm K}$&nbsp; remains the same if&nbsp; ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$&nbsp; and&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$&nbsp; are interchanged.
 +
- $D_{\rm K}$&nbsp; depends only on the sum&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$.&nbsp;
 +
- The red area in the graph is equal to the blue rectangular area.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The ECF value $\varphi_e(k = 0)$ always indicates the mean error probability $p_{\rm M}$, while the ECF limit for $k &#8594; &#8734;$ is equal to $p_{\rm M}^2$.
'''(2)'''&nbsp;  
+
*From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$.
'''(3)'''&nbsp;  
+
*In [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]], this value is calculated in a different way.
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
 
 +
'''(2)'''&nbsp; If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for.
 +
:$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 +
 +
(p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm
 +
G})\hspace{0.05cm} = 10^{-4} +
 +
(0.1- 0.01) \cdot (0.01- 0.001)=10^{-4} + 0.09 \cdot 0.009
 +
\hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; According to the general definition equation, the following holds for the error correlation period
 +
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 +
}^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm
 +
M}^2]\hspace{0.05cm}.$$
 +
 
 +
*With the expressions
 +
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 +
\cdot (p_{\rm M}- p_{\rm
 +
G}) = \varphi_{e0} - p_{\rm M}^2\hspace{0.05cm},$$
 +
:$$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm
 +
B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm
 +
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
 +
 
 +
:this equation can be written as follows:
 +
:$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}
 +
A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 -
 +
B)^k\hspace{0.05cm}.$$
 +
 
 +
*Using the summation formula of a geometric series, this gives the final result:
 +
:$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm
 +
B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm
 +
G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
 +
 
 +
*So <u>solution 3</u> is correct.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get
 +
:$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; Only <u>solution 1</u> is correct, as shown in the sample solutions to the last subtasks:
 +
*Thus the correlation term is fixed, for example:
 +
*With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.
 +
*But now the mean error probability&nbsp; $p_{\rm M} \approx 9.1\%$&nbsp; instead of&nbsp; $1\%$, respectively for&nbsp; $p_{\rm G} = 0.001$&nbsp; and &nbsp;$p_{\rm B} = 0.1$.
 +
*The last statement is also false. This statement would only be true if&nbsp; $\varphi_e(k)$&nbsp; was plotted linearly and not logarithmically as here.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.3 Bündelfehlerkanäle^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.3 Burst Error Channels^]]

Latest revision as of 14:22, 19 October 2022

Error correlation function of the GE model

The graph shows the error correlation function  (ECF) of the Gilbert–Elliott model  with the parameters

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$

in logarithmic representation.

This model is discussed in detail in  "Exercise 5.6Z".  In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities

$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm},$$
$$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$

it can be written for:

$$\varphi_{e}(k) = \left\{ \begin{array}{c} p_{\rm M} \\ p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$

This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition:

$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm M}^2 \big]\hspace{0.05cm}.$$

The reference value  $\varphi_{e0}$  is obtained by extrapolation  of the error correlation function to the point  $k = 0$. If, as here, the ECF curve is given analytically,  $\varphi_{e0}$  can also be calculated by inserting the value  $k = 0$  into the equation which is actually only valid for  $k > 0$. 




Notes:



Questions

1

Which ECF value is exactly valid for  $k = 0$?

$\varphi_e(k = 0) \ = \ $

$\ \cdot 10^{-2}$

2

What is the value extrapolated from the given ECF for  $k = 0$?

$\varphi_{e0} \ = \ $

$\ \cdot 10^{-2}$

3

What result is obtained for the error correlation duration  $D_{\rm K}$  with the quantities  $A$  and  $B$ defined in front?

$D_{\rm K} = A \cdot B$,
$D_{\rm K} = 1/A \, - B$,
$D_{\rm K} = 1/B \, -1$.

4

What is the correlation duration for the GE model at hand?

$D_{\rm K} \ = \ $

5

Which statements are valid regarding the correlation duration  $D_{\rm K}$  of the GE model? Note the logarithmic ordinate for your answer.

$D_{\rm K}$  remains the same if  ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$  and  ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$  are interchanged.
$D_{\rm K}$  depends only on the sum  ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$. 
The red area in the graph is equal to the blue rectangular area.


Solution

(1)  The ECF value $\varphi_e(k = 0)$ always indicates the mean error probability $p_{\rm M}$, while the ECF limit for $k → ∞$ is equal to $p_{\rm M}^2$.

  • From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$.
  • In "Exercise 5.6Z", this value is calculated in a different way.


(2)  If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for.

$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm} = 10^{-4} + (0.1- 0.01) \cdot (0.01- 0.001)=10^{-4} + 0.09 \cdot 0.009 \hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$


(3)  According to the general definition equation, the following holds for the error correlation period

$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm M}^2]\hspace{0.05cm}.$$
  • With the expressions
$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G}) = \varphi_{e0} - p_{\rm M}^2\hspace{0.05cm},$$
$$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$
this equation can be written as follows:
$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 - B)^k\hspace{0.05cm}.$$
  • Using the summation formula of a geometric series, this gives the final result:
$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
  • So solution 3 is correct.


(4)  With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get

$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$


(5)  Only solution 1 is correct, as shown in the sample solutions to the last subtasks:

  • Thus the correlation term is fixed, for example:
  • With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.
  • But now the mean error probability  $p_{\rm M} \approx 9.1\%$  instead of  $1\%$, respectively for  $p_{\rm G} = 0.001$  and  $p_{\rm B} = 0.1$.
  • The last statement is also false. This statement would only be true if  $\varphi_e(k)$  was plotted linearly and not logarithmically as here.