Difference between revisions of "Aufgaben:Exercise 5.7: Rectangular Matched Filter"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID574__Sto_A_5_7.png|right|frame|Useful impulse&nbsp; $g(t)$&nbsp; and  <br>MF impulse response&nbsp; $h(t)$]]
+
[[File:P_ID574__Sto_A_5_7.png|right|frame|Pulse&nbsp; $g(t)$&nbsp; and  Matched Filter impulse response&nbsp; $h(t)$]]
At the input of a lowpass filter with a rectangular impulse response&nbsp; $h(t)$&nbsp; the reception signal&nbsp; $r(t)$&nbsp; is present, which is additively composed of a pulse-shaped useful signal&nbsp; $g(t)$&nbsp; and a noise signal&nbsp; $n(t)$.&nbsp; &nbsp; It holds:
+
At the input of a lowpass filter with a rectangular impulse response&nbsp; $h(t)$&nbsp; the reception signal&nbsp; $r(t)$&nbsp; is present, which is additively composed of a pulse-shaped signal component&nbsp; $g(t)$&nbsp; and a noise component&nbsp; $n(t)$.&nbsp; &nbsp; It holds:
* The useful pulse&nbsp;  $g(t)$&nbsp; is rectangular.
+
* The pulse&nbsp;  $g(t)$&nbsp; is rectangular.
 
* The pulse duration is&nbsp; $\Delta t_g = 2 \hspace{0.08cm}\rm &micro; s$.
 
* The pulse duration is&nbsp; $\Delta t_g = 2 \hspace{0.08cm}\rm &micro; s$.
 
* The pulse amplitude is&nbsp; $g_0 = 2 \hspace{0.08cm}\rm V$.  
 
* The pulse amplitude is&nbsp; $g_0 = 2 \hspace{0.08cm}\rm V$.  
Line 20: Line 20:
  
  
 
+
Notes:  
 
 
 
 
''Notes:''
 
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Matched_Filter|Matched Filter]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Matched_Filter|Matched Filter]].
*For the questions&nbsp; '''(1)'''&nbsp; to&nbsp; '''(6)'''&nbsp; &nbsp; $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm &micro; s$ always applies.
+
*For the questions&nbsp; '''(1)'''&nbsp; to&nbsp; '''(6)''':&nbsp; &nbsp; $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm &micro; s$ always applies.
 
   
 
   
  
Line 54: Line 51:
  
  
{What is the useful sample size at the optimal time&nbsp; $T_\text{D, opt}$&nbsp; and the interference power&nbsp; $\sigma_d^2$&nbsp; in front of the detector?
+
{What is the value of the signal component&nbsp; $d_{\rm S}(t)$&nbsp; at the optimal time&nbsp; $T_\text{D, opt}$&nbsp; and the noise power&nbsp; $\sigma_d^2$&nbsp; in front of the detector?
 
|type="{}"}
 
|type="{}"}
 
$d_{\rm S}(T_\text{D, opt}) \ =  \ $ { 2 3% } $\ \rm V$
 
$d_{\rm S}(T_\text{D, opt}) \ =  \ $ { 2 3% } $\ \rm V$
Line 65: Line 62:
  
  
{Which of the following statements are true if&nbsp; $\Delta t_h =1 \hspace{0.08cm}\rm &micro; s$&nbsp; holds?&nbsp;  &nbsp; <i>Note:</i>&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $1 \hspace{0.05cm}\rm &micro; s$,&nbsp; the impulse response thus has the value&nbsp; $10^6 \ \rm 1/s$.
+
{Which of the following statements are true if&nbsp; $\Delta t_h =1 \hspace{0.08cm}\rm &micro; s$&nbsp; holds?&nbsp;  &nbsp; Note:&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $1 \hspace{0.05cm}\rm &micro; s$,&nbsp; the impulse response thus has the value&nbsp; $10^6 \ \rm 1/s$.
 
|type="[]"}
 
|type="[]"}
+ Each&nbsp; $T_{\rm D}$ in the range&nbsp; $3 \hspace{0.08cm}\rm &micro; s$ ... $4 \hspace{0.05cm}\rm &micro; s$&nbsp; leads to the maximum SNR.
+
+ Each time point&nbsp; $T_{\rm D}$&nbsp; in the range&nbsp; $3 \hspace{0.08cm}\rm &micro; s$ ... $4 \hspace{0.05cm}\rm &micro; s$&nbsp; leads to the maximum SNR.
- The useful value&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+
- The signal component&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+ The interference power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;  
+
+ The noise power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;  
 
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(3)'''.&nbsp;  
 
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(3)'''.&nbsp;  
  
  
{Which of the following statements are true if&nbsp; $\Delta t_h =3 \hspace{0.08cm}\rm &micro; s$?&nbsp; &nbsp; &nbsp; <i>Note:</i>&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $3 \hspace{0.05cm}\rm &micro; s$&nbsp;the impulse response has the value&nbsp; $0.33 \cdot 10^6 \ \rm 1/s$.
+
{Which of the following statements are true if&nbsp; $\Delta t_h =3 \hspace{0.08cm}\rm &micro; s$?&nbsp; &nbsp; Note:&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $3 \hspace{0.05cm}\rm &micro; s$&nbsp;the impulse response has the value&nbsp; $0.33 \cdot 10^6 \ \rm 1/s$.
 
|type="[]"}
 
|type="[]"}
- Each $T_{\rm D}$ in the range $3 \hspace{0.05cm}\rm &micro; s$ ... $4 \hspace{0.08cm}\rm &micro; s$ leads to the maximum SNR.
+
- Each time point&nbsp; $T_{\rm D}$&nbsp; in the range&nbsp; $3 \hspace{0.08cm}\rm &micro; s$ ... $4 \hspace{0.05cm}\rm &micro; s$&nbsp; leads to the maximum SNR.
+ The useful value&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+
+ The signal component&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
- The interference power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+
- The noise power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;
 
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(3)'''.&nbsp;
 
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(3)'''.&nbsp;
  

Revision as of 12:57, 21 February 2022

Pulse  $g(t)$  and Matched Filter impulse response  $h(t)$

At the input of a lowpass filter with a rectangular impulse response  $h(t)$  the reception signal  $r(t)$  is present, which is additively composed of a pulse-shaped signal component  $g(t)$  and a noise component  $n(t)$.    It holds:

  • The pulse  $g(t)$  is rectangular.
  • The pulse duration is  $\Delta t_g = 2 \hspace{0.08cm}\rm µ s$.
  • The pulse amplitude is  $g_0 = 2 \hspace{0.08cm}\rm V$.
  • The center of the pulse is at  $T_g = 3 \hspace{0.08cm}\rm µ s$.
  • The noise  $n(t)$  is white and Gaussian distributed.
  • The power density is  $N_0 = 4 \cdot 10^{-6} \hspace{0.08cm}\rm V^2\hspace{-0.1cm}/Hz$  with respect to the  $1 \hspace{0.08cm}\rm \Omega$ resistor.


The rectangular impulse response of the filter starts at  $t = 0$.

  • The impulse response duration  $\Delta t_h$  is freely selectable.
  • The height  $1/\Delta t_h$  of the impulse response is adjusted in each case so that  $H(f = 0) = 1$. 



Notes:

  • The exercise belongs to the chapter  Matched Filter.
  • For the questions  (1)  to  (6):    $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm µ s$ always applies.


Questions

1

Which of the statements are true under the assumption  $\Delta t_h =\Delta t_g$? 

The filter is matched to the input pulse  $g(t)$. 
There is another filter with larger S/N ratio.
The filter can be implemented as an integrator over time  $\Delta t_h$. 

2

What is the optimal detection time?

$T_\text{D, opt} \ = \ $

$\ \rm µ s$

3

What is the value of the matched filter constant here?

$K_\text{MF} \ = \ $

$\cdot 10^6 \ \rm 1/Vs$

4

What is the S/N ratio at the optimal detection time?

$\rho_d(T_\text{D, opt}) \ = \ $

5

What is the value of the signal component  $d_{\rm S}(t)$  at the optimal time  $T_\text{D, opt}$  and the noise power  $\sigma_d^2$  in front of the detector?

$d_{\rm S}(T_\text{D, opt}) \ = \ $

$\ \rm V$
$\sigma_d^2 \ = \ $

$\ \rm V^2$

6

What is the S/N ratio at the detection time  $T_{\rm D} = 3 \hspace{0.08cm}\rm µ s$?

$\rho_d(T_{\rm D} = 3 \hspace{0.08cm}\rm µ s) \ = \ $

7

Which of the following statements are true if  $\Delta t_h =1 \hspace{0.08cm}\rm µ s$  holds?    Note:  In the range from  $0$  to  $1 \hspace{0.05cm}\rm µ s$,  the impulse response thus has the value  $10^6 \ \rm 1/s$.

Each time point  $T_{\rm D}$  in the range  $3 \hspace{0.08cm}\rm µ s$ ... $4 \hspace{0.05cm}\rm µ s$  leads to the maximum SNR.
The signal component  $d_S(T_\text{D, opt})$  is smaller than calculated in subtask  (5)
The noise power  $\sigma_d^2$  is larger than calculated in subtask  (5)
The S/N ratio is smaller than calculated in subtask  (3)

8

Which of the following statements are true if  $\Delta t_h =3 \hspace{0.08cm}\rm µ s$?    Note:  In the range from  $0$  to  $3 \hspace{0.05cm}\rm µ s$ the impulse response has the value  $0.33 \cdot 10^6 \ \rm 1/s$.

Each time point  $T_{\rm D}$  in the range  $3 \hspace{0.08cm}\rm µ s$ ... $4 \hspace{0.05cm}\rm µ s$  leads to the maximum SNR.
The signal component  $d_S(T_\text{D, opt})$  is smaller than calculated in subtask  (5)
The noise power  $\sigma_d^2$  is larger than calculated in subtask  (5)
The S/N ratio is smaller than calculated in subtask  (3)


Solution

(1)  Solutions 1 and 3 are correct:

  • For the same pulse duration  $(\Delta t_h =\Delta t_g)$,  there is a matched filter, even if  $g(t)$  and  $h(t)$  differ in amplitude and temporal position.
  • Thus, there is no other filter with better signal–to–noise power ratio.
  • The filter with rectangular impulse response can also be interpreted as an integrator over the time duration  $\Delta t_h$. 


(2)  The impulse response of the matched filter is:   $h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$

  • The input impulse  $g(t)$  is non-zero in the range from  $2 \hspace{0.05cm}\rm µ s$  to  $4 \hspace{0.08cm}\rm µ s$,  and in the range from  $-4 \hspace{0.08cm}\rm µ s$  to  $-2 \hspace{0.08cm}\rm µ s$ when mirrored.
  • By shifting by  $4 \hspace{0.08cm}\rm µ s$,  it is achieved that  $g(T_{\rm D} - t)$,  like the impulse response  $h(t)$,  is between  $0$  and  $2 \hspace{0.08cm}\rm µ s$.  From this follows:   $T_\text{D, opt}\hspace{0.15cm}\underline{ =4 \hspace{0.08cm}\rm µ s}$.


(3)  With  $\Delta t_h =\Delta t_g = 2 \cdot 10^{-6}\hspace{0.05cm}\rm µ s$  and  $g_0 = 2 \hspace{0.08cm}\rm V$,  we obtain  $K_{\rm MF} 1/(\Delta t_g \cdot g_0)\hspace{0.15cm}\underline{ =0.25 \cdot 10^{6}\hspace{0.08cm}\rm (1/Vs)}$.


(4)  The energy of the useful pulse  $g(t)$  is  $E_g = g_0^2 \cdot \Delta t_g = 8 \cdot 10^{-6}\hspace{0.05cm}\rm V^2s$. 

  • From this it follows for the maximum S/N ratio:
$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) = \frac{2 \cdot E_g }{N_0 } = \frac{{2 \cdot 8 \cdot 10^{ - 6} \;{\rm{V}}^2 {\rm{s}}}}{{4 \cdot 10^{ - 6} \;{\rm{V}}^2 /{\rm{Hz}}}}\hspace{0.15cm}\underline{ = 4}.$$


Output pulse of the matched filter for subtask  (5)

(5)  The output pulse  $d_{\rm S}(t)$  is triangular between $2 \hspace{0.05cm}\rm µ s$  and  $6 \hspace{0.05cm}\rm µ s$.

  • The maximum  $g_0\hspace{0.15cm}\underline{= 2 \hspace{0.08cm}\rm V}$  is at  $T_\text{D, opt} =4 \hspace{0.05cm}\rm µ s$.
  • The interference power is given by:
$$\sigma _d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } \hspace{0.15 cm}\underline{= 1\;{\rm{V}}^2} .$$
  • Using these two quantities, we can again calculate the maximum S/N ratio:
$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) = \frac{{d_{\rm S} (T_{{\rm{D, \hspace{0.05cm}opt}}} )^2}}{\sigma _d ^2 } = \frac{({2\;{\rm{V}})^2 }}{{1\;{\rm{V}}^2 }} = 4.$$


(6)  From the above diagram, one can see that now the useful sample is only half as large, namely  $1 \hspace{0.08cm}\rm V$.

  • Thus for  $T_\text{D, opt} =3 \hspace{0.08cm}\rm µ s$  the S/N ratio is smaller by a factor of  $4$,  i.e.  $\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} )\hspace{0.15 cm}\underline{=1}$.


Output pulse of the matched filter for subtask  (7)

(7)  Solutions 1, 3 and 4 are correct:

  • The diagram shows that now the output pulse  $d_{\rm S}(t)$  is trapezoidal.
  • In the range from  $3 \hspace{0.05cm}\rm µ s$  to  $4 \hspace{0.05cm}\rm µ s$  the useful sample value is constantly equal to  $g_0= 2 \hspace{0.08cm}\rm V$
  • Because of the only half as wide impulse response  $h(t)$,  the frequency response  $H(f)$  is more broadband by a factor of  $2$  and thus the interference power is larger:
$$\sigma_d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {h^2 (t)\,{\rm{d}}t} = \frac{N_0 }{2 \cdot \Delta t_h } = 2\;{\rm{V}}^2 .$$
  • Thus, the S/N ratio is now   $\rho_d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) \hspace{0.15cm}\underline{= 2}.$


Output pulse of the matched filter for subtask  (8)

(8)  Solutions 2 and 4 are correct:

  • The output pulse  $d_{\rm S}(t)$  for  $\Delta t_h = 3 \hspace{0.05cm}\rm µ s$ is sketched on the right.  This is also trapezoidal.
  • The optimal detection time is now in the range between $4 \hspace{0.05cm}\rm µ s$  and  $5 \hspace{0.05cm}\rm µ s$.
  • However, the useful signal is now only one-third as large as when matched:   $d_{\rm S}(T_\text{D, opt}) = 2/3 \hspace{0.08cm}\rm V$.
  • For the interference power now applies:
$$\sigma_d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } = \frac{2}{3}\;{\rm{V}}^2 .$$
  • Thus, the interference power is smaller (i.e. more favorable) than with adaptation according to subtask  (5).
  • Nevertheless, the S/N ratio is still worse than in subtask  (7) due to the smaller useful sample:
$$\rho _d (T_{{\rm{D\hspace{0.05cm},opt}}} ) = \frac{{(2/3\;{\rm{V}})^2 }}{{2/3\;{\rm{V}}^2 }} = {2}/{3}.$$