Difference between revisions of "Aufgaben:Exercise 5.7: Rectangular Matched Filter"

From LNTwww
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Matched-Filter
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Matched_Filter
 
}}
 
}}
  
[[File:P_ID574__Sto_A_5_7.png|right|Rechteckförmige Matched-Filter-Signale]]
+
[[File:P_ID574__Sto_A_5_7.png|right|frame|Pulse  $g(t)$  and  Matched Filter impulse response  $h(t)$]]
Am Eingang eines Tiefpasses mit einer rechteckförmigen Impulsantwort $h(t)$ liegt das Empfangssignal $r(t)$ an, das sich additiv aus einem impulsförmigen Nutzsignal $g(t)$ und einem Rauschsignal $n(t)$ zusammensetzt. Es gelte:
+
At the input of a lowpass filter with a rectangular impulse response  $h(t)$  the reception signal  $r(t)$  is present, which is additively composed of a pulse-shaped signal component  $g(t)$  and a noise component  $n(t)$.    It holds:
* Der Nutzimpuls $g(t)$ ist rechteckförmig.
+
* The pulse  $g(t)$  is rectangular.
* Die Impulsdauer beträgt $\Delta t_g = 2 \hspace{0.05cm}\rm \mu s$.
+
* The pulse duration is  $\Delta t_g = 2 \hspace{0.08cm}\rm µ s$.
* Die Impulsamplitude ist $g_0 = 2 \hspace{0.05cm}\rm V$.  
+
* The pulse amplitude is  $g_0 = 2 \hspace{0.08cm}\rm V$.  
* Die Mitte des Impulses $T_g = 3 \hspace{0.05cm}\rm \mu s$.
+
* The center of the pulse is at  $T_g = 3 \hspace{0.08cm}\rm µ s$.
* Das Rauschen $n(t)$ ist weiß und gaußverteilt.
+
* The noise  $n(t)$  is white and Gaussian distributed.
* Die Leistungsdichte beträgt $N_0 = 4 \cdot 10^{-6} \hspace{0.05cm}\rm V^2\hspace{-0.1cm}/Hz$ bezogen auf den Widerstand $1 \hspace{0.05cm}\rm \Omega$.
+
* The power density is  $N_0 = 4 \cdot 10^{-6} \hspace{0.08cm}\rm V^2\hspace{-0.1cm}/Hz$  with respect to the  $1 \hspace{0.08cm}\rm \Omega$ resistor.
  
  
Die rechteckförmige Impulsantwort des Filters beginnt bei $t = 0$. Die Impulsantwortdauer $\Delta t_h$ ist frei wählbar. Die Höhe $1/\Delta t_h$ der Impulsantwort ist jeweils so angepasst, dass $H(f = 0) = 1$ gilt.
+
The rectangular impulse response of the filter starts at  $t = 0$.  
 +
*The impulse response duration  $\Delta t_h$  is freely selectable.
 +
*The height  $1/\Delta t_h$  of the impulse response is adjusted in each case so that  $H(f = 0) = 1$. 
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Matched-Filter|Matched-Filter]].
+
 
*Für die Teilfragen (1) bis (6) gelte stets $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm \mu s$.
+
Notes:  
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Matched_Filter|Matched Filter]].
 +
*For the questions  '''(1)'''  to  '''(6)''':    $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm µ s$ always applies.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der drei Aussagen sind unter der Annahme $\Delta t_h =\Delta t_g$ zutreffend?
+
{Which of the statements are true under the assumption&nbsp; $\Delta t_h =\Delta t_g$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ Das Filter ist an den Eingangsimpuls $g(t)$ angepasst.
+
+ The filter is matched to the input pulse&nbsp; $g(t)$.&nbsp;
- Es gibt ein anderes Filter mit größerem S/N-Verhältnis.
+
- There is another filter with larger S/N ratio.
+ Das Filter lässt sich als Integrator über die Zeit $\Delta t_h$ realisieren.
+
+ The filter can be implemented as an integrator over time&nbsp; $\Delta t_h$.&nbsp;
  
  
{Was ist der optimale Detektionszeitpunkt?
+
{What is the optimal detection time?
 
|type="{}"}
 
|type="{}"}
$T_\text{D, opt} \ = $ { 4 3% } $\ \rm \mu s$
+
$T_\text{D, opt} \ = \ $ { 4 3% } $\ \rm &micro; s$
  
  
{Welchen Wert besitzt hier die Matched-Filter-Konstante?
+
{What is the value of the matched filter constant here?
 
|type="{}"}
 
|type="{}"}
$K_\text{MF} \ = $ { 0.25 3% } $\cdot 10^6 \ \rm 1/Vs$
+
$K_\text{MF} \ = $ { 0.25 3% } $\cdot 10^6 \ \rm 1/Vs$
  
  
{Welches S/N-Verhältnis ergibt sich zum optimalen Detektionszeitpunkt?
+
{What is the S/N ratio at the optimal detection time?
 
|type="{}"}
 
|type="{}"}
$\rho_d(T_\text{D, opt}) \ = $ { 4 3% }
+
$\rho_d(T_\text{D, opt}) \ = \ $ { 4 3% }
  
  
{Wie groß sind der Nutzabtastwert zum optimalen Zeitpunkt <i>T</i><sub>D, opt</sub> und die Störleistung vor dem Detektor?
+
{What is the value of the signal component&nbsp; $d_{\rm S}(t)$&nbsp; at the optimal time&nbsp; $T_\text{D, opt}$&nbsp; and the noise power&nbsp; $\sigma_d^2$&nbsp; in front of the detector?
 
|type="{}"}
 
|type="{}"}
$d_{\rm S}(T_\text{D, opt}) \ = $ { 2 3% } $\ \rm V$
+
$d_{\rm S}(T_\text{D, opt}) \ = \ $ { 2 3% } $\ \rm V$
$\sigma_d^2 \ = $ { 1 3% } $\ \rm V^2$
+
$\sigma_d^2 \ = \ $ { 1 3% } $\ \rm V^2$
  
  
{Welches S/N-Verhältnis ergibt sich zum Detektionszeitpunkt $T_{\rm D} = 3 \hspace{0.05cm}\rm \mu s$?
+
{What is the S/N ratio at the detection time&nbsp; $T_{\rm D} = 3 \hspace{0.08cm}\rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
$\rho_d(T_{\rm D} = 3 \hspace{0.05cm}\rm \mu s) \ = $ { 1 3% }
+
$\rho_d(T_{\rm D} = 3 \hspace{0.08cm}\rm &micro; s) \ = \ $ { 1 3% }
  
  
{Welche der folgenden Aussagen treffen zu, wenn $\Delta t_h =1 \hspace{0.05cm}\rm \mu s$ gilt?  
+
{Which of the following statements are true if&nbsp; $\Delta t_h =1 \hspace{0.08cm}\rm &micro; s$&nbsp; holds?&nbsp;  &nbsp; Note:&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $1 \hspace{0.05cm}\rm &micro; s$,&nbsp; the impulse response thus has the value&nbsp; $10^6 \ \rm 1/s$.
<br><i>Hinweis:</i> Im Bereich von $0$ bis $1 \hspace{0.05cm}\rm \mu s$ hat die Impulsantwort somit den Wert $10^6 \ \rm 1/s$.
 
 
|type="[]"}
 
|type="[]"}
+ Jedes $T_{\rm D}$ im Bereich $3 \hspace{0.05cm}\rm \mu s$ ... $4 \hspace{0.05cm}\rm \mu s$ führt zum maximalen SNR.
+
+ Each time point&nbsp; $T_{\rm D}$&nbsp; in the range&nbsp; $3 \hspace{0.08cm}\rm &micro; s$ ... $4 \hspace{0.05cm}\rm &micro; s$&nbsp; leads to the maximum SNR.
- Der Nutzwert $d_S(T_\text{D, opt})$ ist kleiner als in der Teilaufgabe (5) berechnet.
+
- The signal component&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+ Die Störleistung $\sigma_d^2$ ist größer als  in der Teilaufgabe  (5) berechnet.
+
+ The noise power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+ Das S/N-Verhältnis ist kleiner als  in der Teilaufgabe (3) berechnet.
+
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(4)'''.&nbsp;
  
  
{Welche der folgenden Aussagen treffen zu, wenn $\Delta t_h =3 \hspace{0.05cm}\rm \mu s$ gilt?  
+
{Which of the following statements are true if&nbsp; $\Delta t_h =3 \hspace{0.08cm}\rm &micro; s$?&nbsp; &nbsp; Note:&nbsp; In the range from&nbsp; $0$&nbsp; to&nbsp; $3 \hspace{0.05cm}\rm &micro; s$&nbsp;the impulse response has the value&nbsp; $0.33 \cdot 10^6 \ \rm 1/s$.
<br><i>Hinweis:</i> Im Bereich von $0$ bis $13 \hspace{0.05cm}\rm \mu s$ hat die Impulsantwort den Wert $0.33 \cdot 10^6 \ \rm 1/s$.
 
 
|type="[]"}
 
|type="[]"}
- Jedes $T_{\rm D}$ im Bereich $3 \hspace{0.05cm}\rm \mu s$ ... $4 \hspace{0.05cm}\rm \mu s$ führt zum maximalen SNR.
+
- Each time point&nbsp; $T_{\rm D}$&nbsp; in the range&nbsp; $3 \hspace{0.08cm}\rm &micro; s$ ... $4 \hspace{0.05cm}\rm &micro; s$&nbsp; leads to the maximum SNR.
+ Der Nutzwert $d_S(T_\text{D, opt})$ ist kleiner als in der Teilaufgabe (5) berechnet.
+
+ The signal component&nbsp; $d_S(T_\text{D, opt})$&nbsp; is smaller than calculated in subtask&nbsp; '''(5)'''.&nbsp;
- Die Störleistung $\sigma_d^2$ ist größer als  in der Teilaufgabe  (5) berechnet.
+
- The noise power&nbsp; $\sigma_d^2$&nbsp; is larger than calculated in subtask&nbsp; '''(5)'''.&nbsp;
+ Das S/N-Verhältnis ist kleiner als  in der Teilaufgabe (3) berechnet.
+
+ The S/N ratio is smaller than calculated in subtask&nbsp; '''(4)'''.&nbsp;
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; <u>Solutions 1 and 3</u>&nbsp; are correct:
*Bei gleicher Impulsdauer ($\Delta t_h =\Delta t_g$) handelt es sich um ein Matched-Filter, auch wenn die Amplitude ($0.5 \cdot 10^{-6} \hspace{0.05cm}\rm 1/s$ bzw. $2 \hspace{0.05cm}\rm V$) und die zeitliche Lage von $g(t)$ und $h(t)$ nicht übereinstimmen.  
+
*For the same pulse duration&nbsp; $(\Delta t_h =\Delta t_g)$,&nbsp; there is a matched filter,&nbsp; even if&nbsp; $g(t)$&nbsp; and&nbsp; $h(t)$&nbsp; differ in amplitude and temporal position.
*Damit gibt es auch kein anderes Filter mit besserem Signal-zu-Rauschleistungsverhältnis.  
+
*Thus,&nbsp; there is no other filter with better signal&ndash;to&ndash;noise power ratio.  
*Das Filter mit rechteckförmiger Impulsantwort lässt sich auch als ein Integrator über die Zeitdauer $\Delta t_h$ interpretieren.
+
*The filter with rectangular impulse response can also be interpreted as an integrator over the time duration&nbsp; $\Delta t_h$.&nbsp;
 
   
 
   
  
'''(2)'''&nbsp; Die Impulsantwort des Matched-Filters lautet: $h_{\rm MF} (t) = K_{\rm MF}  \cdot g(T_{\rm D}  - t).$
 
*Der Eingangsimpuls $g(t)$ ist im Bereich von $2 \hspace{0.05cm}\rm \mu s$ bis $4 \hspace{0.05cm}\rm \mu s$ ungleich Null, bei Spiegelung im Bereich von $-4 \hspace{0.05cm}\rm \mu s$ bis $-2 \hspace{0.05cm}\rm \mu s$.
 
*Durch eine Verschiebung um $4 \hspace{0.05cm}\rm \mu s$ wird erreicht, dass $g(T_{\rm D}  - t)$ wie die Impulsantwort $h(t)$ zwischen $0$ und $2 \hspace{0.05cm}\rm \mu s$. Daraus folgt: $T_\text{D, opt}\hspace{0.15cm}\underline{ =4 \hspace{0.05cm}\rm \mu s}$.
 
  
 +
'''(2)'''&nbsp; The impulse response of the matched filter is: &nbsp;  $h_{\rm MF} (t) = K_{\rm MF}  \cdot g(T_{\rm D}  - t).$
 +
*The input impulse&nbsp; $g(t)$&nbsp; is non-zero in the range from &nbsp;$2 \hspace{0.05cm}\rm &micro; s$&nbsp; to &nbsp;$4 \hspace{0.08cm}\rm &micro; s$,&nbsp; and in the range from &nbsp;$-4 \hspace{0.08cm}\rm &micro; s$&nbsp; to &nbsp;$-2 \hspace{0.08cm}\rm &micro; s$,&nbsp; when mirrored.
 +
*After shifting by &nbsp;$4 \hspace{0.08cm}\rm &micro; s$,&nbsp; it is achieved that&nbsp; $g(T_{\rm D}  - t)$ is,&nbsp; like the impulse response&nbsp; $h(t)$,&nbsp; between&nbsp; $0$&nbsp; and &nbsp;$2 \hspace{0.08cm}\rm &micro; s$.&nbsp;
 +
*From this follows: &nbsp; $T_\text{D, opt}\hspace{0.15cm}\underline{ =4 \hspace{0.08cm}\rm &micro; s}$.
  
'''(3)'''&nbsp; Mit $\Delta t_h =\Delta t_g = 2 \cdot 10^{-6}\hspace{0.05cm}\rm \mu s$ und $g_0 = 2 \hspace{0.05cm}\rm V$ erhält man $K_{\rm MF} 1/(\Delta t_g \cdot g_0)\hspace{0.15cm}\underline{ =0.25 \cdot 10^{6}\hspace{0.05cm}\rm (1/Vs)}$ .
 
  
  
'''(4)'''&nbsp; Die Energie des Nutzimpulses $g(t)$ ist $E_g = g_0^2 \cdot \Delta t_g = 8 \cdot 10^{-6}\hspace{0.05cm}\rm V^2s$. Daraus folgt für das maximale S/N-Verhältnis:
+
'''(3)'''&nbsp; With &nbsp;$\Delta t_h =\Delta t_g = 2 \cdot 10^{-6}\hspace{0.05cm}\rm &micro; s$&nbsp; and &nbsp;$g_0 = 2 \hspace{0.08cm}\rm V$,&nbsp; we obtain &nbsp;$K_{\rm MF} = 1/(\Delta t_g \cdot g_0)\hspace{0.15cm}\underline{ =0.25 \cdot 10^{6}\hspace{0.08cm}\rm (1/Vs)}$.
:$$\rho _d (T_{{\rm{D, \hspace{0.05cm}opt}}} ) = \frac{2 \cdot E_g }{N_0 } = \frac{{2 \cdot 8 \cdot 10^{ - 6} \;{\rm{V}}^2 {\rm{s}}}}{{4 \cdot 10^{ - 6} \;{\rm{V}}^2 /{\rm{Hz}}}}\hspace{0.15cm}\underline{ = 4}.$$
 
  
[[File:P_ID575__Sto_A_5_7_f.png|right|Ausgangsimpuls des Matched-Filters zur Teilaufgabe (5)]]
+
 
'''(5)'''&nbsp; Der Ausgangsimpuls $d_{\rm S}(t)$ ist dreieckförmig zwischen 2 und 6 Mikrosekunden mit dem Maximum $g_0\hspace{0.15cm}\underline{= 2 \hspace{0.05cm}\rm V}$ bei $T_\text{D, opt} =4 \hspace{0.05cm}\rm \mu s$. Die Störleistung ergibt sich zu:
+
 
 +
'''(4)'''&nbsp; The energy of the pulse&nbsp; $g(t)$&nbsp; is &nbsp;$E_g = g_0^2 \cdot \Delta t_g = 8 \cdot 10^{-6}\hspace{0.05cm}\rm V^2s$.&nbsp;
 +
*From this it follows for the maximum S/N ratio:
 +
:$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) = \frac{2 \cdot E_g }{N_0 } = \frac{{2 \cdot 8 \cdot 10^{ - 6} \;{\rm{V}}^2 {\rm{s}}}}{{4 \cdot 10^{ - 6} \;{\rm{V}}^2 /{\rm{Hz}}}}\hspace{0.15cm}\underline{ = 4}.$$
 +
 
 +
 
 +
 
 +
[[File:P_ID575__Sto_A_5_7_f.png|right|frame|MF output&nbsp; $d_{\rm S}(t)$&nbsp; for subtask&nbsp; '''(5)''']]
 +
'''(5)'''&nbsp; The matched filter output pulse&nbsp; $d_{\rm S}(t)$&nbsp; is triangular between&nbsp;$2 \hspace{0.05cm}\rm &micro; s$&nbsp; and &nbsp;$6 \hspace{0.05cm}\rm &micro; s$.
 +
*The maximum &nbsp;$g_0\hspace{0.15cm}\underline{= 2 \hspace{0.08cm}\rm V}$&nbsp; is at &nbsp;$T_\text{D, opt} =4 \hspace{0.05cm}\rm &micro; s$.  
 +
*The noise power is given by:
 
:$$\sigma _d ^2  = \frac{N_0 }{2 \cdot \Delta t_h } \hspace{0.15 cm}\underline{= 1\;{\rm{V}}^2} .$$
 
:$$\sigma _d ^2  = \frac{N_0 }{2 \cdot \Delta t_h } \hspace{0.15 cm}\underline{= 1\;{\rm{V}}^2} .$$
  
Mit diesen beiden Rechengrößen kann man wiederum das maximale S/N-Verhältnis berechnen:
+
*Using these two quantities,&nbsp; we can calculate the maximum S/N ratio:
:$$\rho _d (T_{{\rm{D, \hspace{0.05cm}opt}}} )  = \frac{{d_{\rm S} (T_{{\rm{D, \hspace{0.05cm}opt}}} )^2}}{\sigma _d ^2 } = \frac{({2\;{\rm{V}})^2 }}{{1\;{\rm{V}}^2 }} = 4.$$
+
:$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} )  = \frac{{d_{\rm S} (T_{{\rm{D, \hspace{0.05cm}opt}}} )^2}}{\sigma _d ^2 } = \frac{({2\;{\rm{V}})^2 }}{{1\;{\rm{V}}^2 }} = 4.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; From the above diagram,&nbsp; one can see that now&nbsp; $d_{\rm S}(T_\text{D})$&nbsp; is only half as large,&nbsp; namely&nbsp; $1 \hspace{0.08cm}\rm V$.
 +
*Thus for&nbsp; $T_\text{D} =3 \hspace{0.08cm}\rm &micro; s$&nbsp; the S/N ratio is smaller by a factor of&nbsp; $4$,&nbsp; i.e.&nbsp; $\rho _d (T_{{\rm{D}}} )\hspace{0.15 cm}\underline{=1}$.
 +
 
  
'''(6)'''&nbsp; Aus obiger Skizze erkennt man, dass nun der Nutzabtastwert nur mehr halb so groß ist, nämlich $1 \hspace{0.05cm}\rm V$. Damit ist für $T_\text{D, opt} =3 \hspace{0.05cm}\rm \mu s$ das S/N-Verhältnis um den Faktor $4$ kleiner, also $\rho _d (T_{{\rm{D, \hspace{0.05cm}opt}}} )\hspace{0.15 cm}\underline{=3}$.
 
  
[[File:P_ID576__Sto_A_5_7_g.png|right|Ausgangsimpuls des Matched-Filters zur Teilaufgabe (7)]]
+
[[File:P_ID576__Sto_A_5_7_g.png|right|frame|MF output&nbsp; $d_{\rm S}(t)$&nbsp;  for subtask&nbsp; '''(7)''']]
'''(7)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1, 3 und 4</u>:
+
'''(7)'''&nbsp; <u>Solutions 1, 3 and 4</u>&nbsp; are correct:
*Die Skizze zeigt, dass nun der Ausgangsimpuls $d_{\rm S}(t)$ trapezförmig verläuft.  
+
*The diagram shows that now the output pulse&nbsp; $d_{\rm S}(t)$&nbsp; is trapezoidal.
*Im Bereich von $3 \hspace{0.05cm}\rm \mu s$ bis $4 \hspace{0.05cm}\rm \mu s$ ist der Nutzabtastwert konstant gleich $g_0= 2 \hspace{0.05cm}\rm V$
+
*In the range from &nbsp;$3 \hspace{0.05cm}\rm &micro; s$&nbsp; to &nbsp;$4 \hspace{0.05cm}\rm &micro; s$&nbsp;  the  pulse&nbsp; $d_{\rm S}(t)$&nbsp; is constantly equal to &nbsp;$g_0= 2 \hspace{0.08cm}\rm V$.
*Wegen der nur halb so breiten Impulsantwort $h(t)$ ist der Frequenzgang $H(f)$ um den Faktor $2$ breitbandiger und dadurch die Störleistung größer:
+
*Because of the only half as wide impulse response&nbsp; $h(t)$,&nbsp; the frequency response&nbsp; $H(f)$&nbsp; is more broadband by a factor of&nbsp; $2$&nbsp; and thus the noise power is larger:
 
:$$\sigma_d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {h^2 (t)\,{\rm{d}}t}  = \frac{N_0 }{2 \cdot \Delta t_h } = 2\;{\rm{V}}^2 .$$
 
:$$\sigma_d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {h^2 (t)\,{\rm{d}}t}  = \frac{N_0 }{2 \cdot \Delta t_h } = 2\;{\rm{V}}^2 .$$
*Damit ergibt sich für das S/N-Verhältnis nun der Wert &nbsp; $\rho_d (T_{{\rm{D, \hspace{0.05cm}opt}}} ) \hspace{0.15cm}\underline{= 2}.$
+
*Thus,&nbsp; the S/N ratio is now &nbsp; $\rho_d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) \hspace{0.15cm}\underline{= 2}.$
 +
 
 +
 
  
[[File:P_ID577__Sto_A_5_7_h.png|right|Ausgangsimpuls des Matched-Filters zur Teilaufgabe (8)]]
+
[[File:P_ID577__Sto_A_5_7_h.png|right|frame|MF output&nbsp; $d_{\rm S}(t)$&nbsp;  for subtask&nbsp; '''(8)''']]
'''(8)'''&nbsp; Richtig sind hier <u>die Lösungsvorschläge 2 und 4</u>:
+
'''(8)'''&nbsp; <u>Solutions 2 and 4</u>&nbsp; are correct:
*Rechts ist der Ausgangsimpuls $d_{\rm S}(t)$ für $\Delta t_h = 3 \hspace{0.05cm}\rm \mu s$ skizziert. Auch dieser ist trapezförmig.  
+
*The matched filter output pulse&nbsp; $d_{\rm S}(t)$&nbsp; for&nbsp; $\Delta t_h = 3 \hspace{0.05cm}\rm &micro; s$ is sketched on the right.&nbsp; This is also trapezoidal.
*Der optimale Detektionszeitpunkt  liegt nun im Bereich zwischen $4 \hspace{0.05cm}\rm \mu s$ und $5 \hspace{0.05cm}\rm \mu s$.
+
*The optimal detection time is now in the range between&nbsp; $4 \hspace{0.05cm}\rm &micro; s$&nbsp; and &nbsp;$5 \hspace{0.05cm}\rm &micro; s$.
*Das Nutzsignal ist aber nun nur mehr ein Drittel so groß wie bei Anpassung: $d_{\rm S}(T_\text{D, opt}) = 2/3 \hspace{0.05cm}\rm V$.
+
*However,&nbsp; the useful signal&nbsp; $d_{\rm S}(t)$&nbsp; is now only one-third as large as when matched: &nbsp; $d_{\rm S}(T_\text{D, opt}) = 2/3 \hspace{0.08cm}\rm V$.
*Für die Störleistung gilt nun:
+
*For the noise power now applies:
 
:$$\sigma_d ^2  = \frac{N_0 }{2 \cdot \Delta t_h } = \frac{2}{3}\;{\rm{V}}^2 .$$
 
:$$\sigma_d ^2  = \frac{N_0 }{2 \cdot \Delta t_h } = \frac{2}{3}\;{\rm{V}}^2 .$$
*Die Störleistung ist zwar kleiner (also günstiger) als bei Anpassung entsprechend der Teilaufgabe (5).  
+
*Thus,&nbsp; the noise power is smaller (i.e. more favorable) than with adaptation according to subtask&nbsp; '''(5)'''.  
*Trotzdem ist das S/N-Verhältnis aufgrund des kleineren Nutzabtastwertes noch schlechter als in der Teilaufgabe (7) berechnet:
+
*Nevertheless,&nbsp; the S/N ratio is still worse than in subtask&nbsp; '''(7)''' due to the smaller&nbsp; $d_{\rm S}(T_{\rm  D})$:
:$$\rho _d (T_{{\rm{D\hspace{0.05cm},opt}}} ) = \frac{{(2/3\;{\rm{V}})^2 }}{{2/3\;{\rm{V}}^2 }} = {2}/{3}.$$
+
:$$\rho _d (T_{{\rm{D\hspace{0.15cm},opt}}} ) = \frac{{(2/3\;{\rm{V}})^2 }}{{2/3\;{\rm{V}}^2 }} = {2}/{3}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 130: Line 146:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^5.4 Matched-Filter^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.4 Matched Filter^]]

Latest revision as of 15:21, 21 February 2022

Pulse  $g(t)$  and Matched Filter impulse response  $h(t)$

At the input of a lowpass filter with a rectangular impulse response  $h(t)$  the reception signal  $r(t)$  is present, which is additively composed of a pulse-shaped signal component  $g(t)$  and a noise component  $n(t)$.    It holds:

  • The pulse  $g(t)$  is rectangular.
  • The pulse duration is  $\Delta t_g = 2 \hspace{0.08cm}\rm µ s$.
  • The pulse amplitude is  $g_0 = 2 \hspace{0.08cm}\rm V$.
  • The center of the pulse is at  $T_g = 3 \hspace{0.08cm}\rm µ s$.
  • The noise  $n(t)$  is white and Gaussian distributed.
  • The power density is  $N_0 = 4 \cdot 10^{-6} \hspace{0.08cm}\rm V^2\hspace{-0.1cm}/Hz$  with respect to the  $1 \hspace{0.08cm}\rm \Omega$ resistor.


The rectangular impulse response of the filter starts at  $t = 0$.

  • The impulse response duration  $\Delta t_h$  is freely selectable.
  • The height  $1/\Delta t_h$  of the impulse response is adjusted in each case so that  $H(f = 0) = 1$. 



Notes:

  • The exercise belongs to the chapter  Matched Filter.
  • For the questions  (1)  to  (6):    $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm µ s$ always applies.


Questions

1

Which of the statements are true under the assumption  $\Delta t_h =\Delta t_g$? 

The filter is matched to the input pulse  $g(t)$. 
There is another filter with larger S/N ratio.
The filter can be implemented as an integrator over time  $\Delta t_h$. 

2

What is the optimal detection time?

$T_\text{D, opt} \ = \ $

$\ \rm µ s$

3

What is the value of the matched filter constant here?

$K_\text{MF} \ = \ $

$\cdot 10^6 \ \rm 1/Vs$

4

What is the S/N ratio at the optimal detection time?

$\rho_d(T_\text{D, opt}) \ = \ $

5

What is the value of the signal component  $d_{\rm S}(t)$  at the optimal time  $T_\text{D, opt}$  and the noise power  $\sigma_d^2$  in front of the detector?

$d_{\rm S}(T_\text{D, opt}) \ = \ $

$\ \rm V$
$\sigma_d^2 \ = \ $

$\ \rm V^2$

6

What is the S/N ratio at the detection time  $T_{\rm D} = 3 \hspace{0.08cm}\rm µ s$?

$\rho_d(T_{\rm D} = 3 \hspace{0.08cm}\rm µ s) \ = \ $

7

Which of the following statements are true if  $\Delta t_h =1 \hspace{0.08cm}\rm µ s$  holds?    Note:  In the range from  $0$  to  $1 \hspace{0.05cm}\rm µ s$,  the impulse response thus has the value  $10^6 \ \rm 1/s$.

Each time point  $T_{\rm D}$  in the range  $3 \hspace{0.08cm}\rm µ s$ ... $4 \hspace{0.05cm}\rm µ s$  leads to the maximum SNR.
The signal component  $d_S(T_\text{D, opt})$  is smaller than calculated in subtask  (5)
The noise power  $\sigma_d^2$  is larger than calculated in subtask  (5)
The S/N ratio is smaller than calculated in subtask  (4)

8

Which of the following statements are true if  $\Delta t_h =3 \hspace{0.08cm}\rm µ s$?    Note:  In the range from  $0$  to  $3 \hspace{0.05cm}\rm µ s$ the impulse response has the value  $0.33 \cdot 10^6 \ \rm 1/s$.

Each time point  $T_{\rm D}$  in the range  $3 \hspace{0.08cm}\rm µ s$ ... $4 \hspace{0.05cm}\rm µ s$  leads to the maximum SNR.
The signal component  $d_S(T_\text{D, opt})$  is smaller than calculated in subtask  (5)
The noise power  $\sigma_d^2$  is larger than calculated in subtask  (5)
The S/N ratio is smaller than calculated in subtask  (4)


Solution

(1)  Solutions 1 and 3  are correct:

  • For the same pulse duration  $(\Delta t_h =\Delta t_g)$,  there is a matched filter,  even if  $g(t)$  and  $h(t)$  differ in amplitude and temporal position.
  • Thus,  there is no other filter with better signal–to–noise power ratio.
  • The filter with rectangular impulse response can also be interpreted as an integrator over the time duration  $\Delta t_h$. 


(2)  The impulse response of the matched filter is:   $h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$

  • The input impulse  $g(t)$  is non-zero in the range from  $2 \hspace{0.05cm}\rm µ s$  to  $4 \hspace{0.08cm}\rm µ s$,  and in the range from  $-4 \hspace{0.08cm}\rm µ s$  to  $-2 \hspace{0.08cm}\rm µ s$,  when mirrored.
  • After shifting by  $4 \hspace{0.08cm}\rm µ s$,  it is achieved that  $g(T_{\rm D} - t)$ is,  like the impulse response  $h(t)$,  between  $0$  and  $2 \hspace{0.08cm}\rm µ s$. 
  • From this follows:   $T_\text{D, opt}\hspace{0.15cm}\underline{ =4 \hspace{0.08cm}\rm µ s}$.


(3)  With  $\Delta t_h =\Delta t_g = 2 \cdot 10^{-6}\hspace{0.05cm}\rm µ s$  and  $g_0 = 2 \hspace{0.08cm}\rm V$,  we obtain  $K_{\rm MF} = 1/(\Delta t_g \cdot g_0)\hspace{0.15cm}\underline{ =0.25 \cdot 10^{6}\hspace{0.08cm}\rm (1/Vs)}$.


(4)  The energy of the pulse  $g(t)$  is  $E_g = g_0^2 \cdot \Delta t_g = 8 \cdot 10^{-6}\hspace{0.05cm}\rm V^2s$. 

  • From this it follows for the maximum S/N ratio:
$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) = \frac{2 \cdot E_g }{N_0 } = \frac{{2 \cdot 8 \cdot 10^{ - 6} \;{\rm{V}}^2 {\rm{s}}}}{{4 \cdot 10^{ - 6} \;{\rm{V}}^2 /{\rm{Hz}}}}\hspace{0.15cm}\underline{ = 4}.$$


MF output  $d_{\rm S}(t)$  for subtask  (5)

(5)  The matched filter output pulse  $d_{\rm S}(t)$  is triangular between $2 \hspace{0.05cm}\rm µ s$  and  $6 \hspace{0.05cm}\rm µ s$.

  • The maximum  $g_0\hspace{0.15cm}\underline{= 2 \hspace{0.08cm}\rm V}$  is at  $T_\text{D, opt} =4 \hspace{0.05cm}\rm µ s$.
  • The noise power is given by:
$$\sigma _d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } \hspace{0.15 cm}\underline{= 1\;{\rm{V}}^2} .$$
  • Using these two quantities,  we can calculate the maximum S/N ratio:
$$\rho _d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) = \frac{{d_{\rm S} (T_{{\rm{D, \hspace{0.05cm}opt}}} )^2}}{\sigma _d ^2 } = \frac{({2\;{\rm{V}})^2 }}{{1\;{\rm{V}}^2 }} = 4.$$


(6)  From the above diagram,  one can see that now  $d_{\rm S}(T_\text{D})$  is only half as large,  namely  $1 \hspace{0.08cm}\rm V$.

  • Thus for  $T_\text{D} =3 \hspace{0.08cm}\rm µ s$  the S/N ratio is smaller by a factor of  $4$,  i.e.  $\rho _d (T_{{\rm{D}}} )\hspace{0.15 cm}\underline{=1}$.


MF output  $d_{\rm S}(t)$  for subtask  (7)

(7)  Solutions 1, 3 and 4  are correct:

  • The diagram shows that now the output pulse  $d_{\rm S}(t)$  is trapezoidal.
  • In the range from  $3 \hspace{0.05cm}\rm µ s$  to  $4 \hspace{0.05cm}\rm µ s$  the pulse  $d_{\rm S}(t)$  is constantly equal to  $g_0= 2 \hspace{0.08cm}\rm V$.
  • Because of the only half as wide impulse response  $h(t)$,  the frequency response  $H(f)$  is more broadband by a factor of  $2$  and thus the noise power is larger:
$$\sigma_d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {h^2 (t)\,{\rm{d}}t} = \frac{N_0 }{2 \cdot \Delta t_h } = 2\;{\rm{V}}^2 .$$
  • Thus,  the S/N ratio is now   $\rho_d (T_{{\rm{D, \hspace{0.08cm}opt}}} ) \hspace{0.15cm}\underline{= 2}.$


MF output  $d_{\rm S}(t)$  for subtask  (8)

(8)  Solutions 2 and 4  are correct:

  • The matched filter output pulse  $d_{\rm S}(t)$  for  $\Delta t_h = 3 \hspace{0.05cm}\rm µ s$ is sketched on the right.  This is also trapezoidal.
  • The optimal detection time is now in the range between  $4 \hspace{0.05cm}\rm µ s$  and  $5 \hspace{0.05cm}\rm µ s$.
  • However,  the useful signal  $d_{\rm S}(t)$  is now only one-third as large as when matched:   $d_{\rm S}(T_\text{D, opt}) = 2/3 \hspace{0.08cm}\rm V$.
  • For the noise power now applies:
$$\sigma_d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } = \frac{2}{3}\;{\rm{V}}^2 .$$
  • Thus,  the noise power is smaller (i.e. more favorable) than with adaptation according to subtask  (5).
  • Nevertheless,  the S/N ratio is still worse than in subtask  (7) due to the smaller  $d_{\rm S}(T_{\rm D})$:
$$\rho _d (T_{{\rm{D\hspace{0.15cm},opt}}} ) = \frac{{(2/3\;{\rm{V}})^2 }}{{2/3\;{\rm{V}}^2 }} = {2}/{3}.$$