Difference between revisions of "Channel Coding/The Basics of Low-Density Parity Check Codes"

From LNTwww
 
(40 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
== Some characteristics of LDPC codes ==
 
== Some characteristics of LDPC codes ==
 
<br>
 
<br>
The&nbsp; <i>Low&ndash;density Parity&ndash;check Codes</i>&nbsp; &ndash; in short &nbsp;'''LDPC codes'''&nbsp; &ndash; were invented as early as the early 1960s and date back to the dissertation&nbsp; [Gal63]<ref name ='Gal63'>Gallager, R. G.: ''Low-density parity-check codes.'' MIT Press, Cambridge, MA, 1963.</ref> by&nbsp; [https://en.wikipedia.org/wiki/Robert_G._Gallager "Robert G. Gallager"]&nbsp;.<br>
+
The&nbsp; "Low&ndash;density Parity&ndash;check Codes"&nbsp; $($in short: &nbsp;&raquo;'''LDPC codes'''&laquo;$)$&nbsp; were invented as early as the early 1960s and date back to the dissertation&nbsp; [Gal63]<ref name ='Gal63'>Gallager, R. G.:&nbsp; Low-density parity-check codes.&nbsp; MIT Press, Cambridge, MA, 1963.</ref>&nbsp; by&nbsp; [https://en.wikipedia.org/wiki/Robert_G._Gallager $\text{Robert G. Gallager}$].<br>
  
However, the idea came several decades too early due to the processor technology of the time. Only three years after Berrou's invention of the turbo codes in 1993, however,&nbsp; [https://en.wikipedia.org/wiki/David_J._C._MacKay David J. C. MacKay]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Radford_M._Neal "Radford M. Neal"]&nbsp; recognized the huge potential of the LDPC codes if they were decoded iteratively symbol by symbol just like the turbo codes. They virtually reinvented the LDPC codes.<br>
+
However,&nbsp; the idea came several decades too early due to the processor technology of the time.&nbsp; Only three years after Berrou's invention of the turbo codes in 1993,&nbsp; however,&nbsp; [https://en.wikipedia.org/wiki/David_J._C._MacKay $\text{David J. C. MacKay}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Radford_M._Neal $\text{Radford M. Neal}$]&nbsp; recognized the huge potential of the LDPC codes if they were decoded iteratively symbol by symbol just like the turbo codes.&nbsp; They virtually reinvented the LDPC codes.<br>
  
As can already be seen from the name component "parity&ndash;check", these codes are linear block codes according to the explanations in the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#.23_OVERVIEW_OF_THE_FIRST_MAIN_CHAPTER_.23|"first main chapter" ]]. Therefore, the same applies here:
+
As can already be seen from the name component&nbsp; "parity&ndash;check"&nbsp; that these codes are linear block codes according to the explanations in the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#.23_OVERVIEW_OF_THE_FIRST_MAIN_CHAPTER_.23|"first main chapter" ]].&nbsp; Therefore,&nbsp; the same applies here:
*The code word results from the information word&nbsp; $\underline{u}$&nbsp; (represented with&nbsp; $k$&nbsp; binary symbols) and the&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_generator_matrix| "generator matrix"]]&nbsp; $\mathbf{G}$&nbsp; of dimension&nbsp; $k &times; n$&nbsp; to&nbsp; $\underline{x} = \underline{u} \cdot \mathbf{G}$&nbsp; &#8658; &nbsp; code word length&nbsp; $n$.<br>
+
*The code word results from the information word&nbsp; $\underline{u}$&nbsp; $($represented with&nbsp; $k$&nbsp; binary symbols$)$&nbsp; and the&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_generator_matrix|$\text{generator matrix}$]]&nbsp; $\mathbf{G}$&nbsp; of dimension&nbsp; $k &times; n$&nbsp; to&nbsp; $\underline{x} = \underline{u} \cdot \mathbf{G}$&nbsp; &#8658; &nbsp; code word length&nbsp; $n$.<br>
  
*The parity-check equations result from the identity&nbsp; $\underline{x} \cdot \mathbf{H}^{\rm T} &equiv; 0$, where&nbsp; $\mathbf{H}$&nbsp; denotes the parity-check matrix. This consists of&nbsp; $m$&nbsp; rows and&nbsp; $n$&nbsp; columns. While in the first chapter basically&nbsp; $m = n -k$&nbsp; was valid, for the LPDC codes we only require&nbsp; $m &#8805; n -k$.<br><br>
+
*The parity-check equations result from the identity &nbsp; $\underline{x} \cdot \mathbf{H}^{\rm T} &equiv; 0$, &nbsp; where&nbsp; $\mathbf{H}$&nbsp; denotes the parity-check matrix.&nbsp; This consists of&nbsp; $m$&nbsp; rows and&nbsp; $n$&nbsp; columns.&nbsp; While in the first chapter basically&nbsp; $m = n -k$&nbsp; was valid,&nbsp; for the LPDC codes we only require&nbsp; $m &#8805; n -k$.<br>
  
A serious difference between an LDPC code and a conventional block code as described in the first chapter is that the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; is sparsely populated with ones&nbsp; ("''low-density''').<br>
+
*A serious difference between an LDPC code and a conventional block code as described in the first main chapter is that the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; is here sparsely populated with&nbsp; "ones" &nbsp; &rArr; &nbsp; "low-density".<br>
  
{{GraueBox|TEXT= 
 
$\text{Example 1:}$&nbsp; The graph shows parity-check matrices&nbsp; $\mathbf{H}$&nbsp; for
 
*the Hamming code with code length&nbsp; $n = 15, \ m = 4$&nbsp; &#8658; &nbsp; $k = 11$&nbsp; information bits,<br>
 
  
*the LDPC code from&nbsp; [Liv15]<ref name='Liv15'>Liva, G.: ''Channels Codes for Iterative Decoding.'' Lecture notes, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.</ref>&nbsp; of length&nbsp; $n = 12$&nbsp; and with&nbsp; $m = 9$&nbsp; parity-check equations &nbsp; &#8658; &nbsp; $k &#8805; 3$.<br><br>
+
{{GraueBox|TEXT=
 +
[[File:EN_KC_T_4_4_S1a_v3.png|right|frame|Parity-check matrices of a Hamming code and a LDPC code|class=fit]]
 +
$\text{Example 1:}$&nbsp; The graph shows parity-check matrices&nbsp; $\mathbf{H}$&nbsp; for
 +
 +
*the Hamming code with code length&nbsp; $n = 15$&nbsp; and  with&nbsp; $m = 4$&nbsp; parity-check equations &nbsp; &#8658; &nbsp; $k = 11$&nbsp; information bits,<br>
 +
 
 +
*the LDPC code from&nbsp; [Liv15]<ref name='Liv15'>Liva, G.:&nbsp; Channels Codes for Iterative Decoding.&nbsp; Lecture notes, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.</ref>&nbsp; of length&nbsp; $n = 12$&nbsp; and with&nbsp; $m = 9$&nbsp; parity-check equations &nbsp; &#8658; &nbsp; $k &#8805; 3$&nbsp; information bits.<br><br>
  
[[File:P ID3065 KC T 4 4 S1a v3 einfacher Rahmen.png|center|frame|Parity-check matrices of a Hamming code and a LDPC code|class=fit]]
+
<u>Remarks:</u>
 +
#In the left graph,&nbsp; the proportion of&nbsp; "ones"&nbsp; is&nbsp; $32/60 \approx  53.3\%$.&nbsp;
 +
#In the right graph the share of&nbsp; "ones"&nbsp; is lower with&nbsp; $36/108 = 33.3\%$.
 +
#For LDPC codes&nbsp; $($relevant for practice &nbsp; &rArr; &nbsp; with long length$)$,&nbsp; the share of&nbsp; "ones"&nbsp; is even significantly lower.<br>
  
*In the left graph, the proportion of ones&nbsp; $32/60 \approx is 53.3\%$, whereas in the right graph the share of ones is lower with&nbsp; $36/108 = 33.3\%$&nbsp;.
 
*For the LDPC codes (long length) relevant for practice, the share of ones is even significantly lower.<br>}}<br>
 
  
 
We now analyze the two parity-check matrices using the rate and Hamming weight:<br>
 
We now analyze the two parity-check matrices using the rate and Hamming weight:<br>
*The rate of the Hamming code under consideration (left graph) is&nbsp; $R = k/n = 11/15 \approx 0.733$. The Hamming weight of each of the four rows is&nbsp; $w_{\rm Z}= 8$, while the Hamming weights&nbsp; $w_{\rm S}(i)$&nbsp; of the columns vary between 1 and 4. For the columns index variable here: &nbsp; $1 &#8804; i &#8804; 15$.
+
*The rate of the Hamming code under consideration&nbsp; $($left graph$)$&nbsp; is&nbsp; $R = k/n = 11/15 \approx 0.733$.&nbsp; The Hamming weight of each of the four rows is&nbsp; $w_{\rm R}= 8$,&nbsp; while the Hamming weights&nbsp; $w_{\rm C}(i)$&nbsp; of the columns vary between&nbsp; $1$&nbsp; and&nbsp; $4$.&nbsp; For the columns index variable here: &nbsp; $1 &#8804; i &#8804; 15$.
  
*In the considered LDPC&ndash;code there are four ones in all rows &nbsp; &#8658; &nbsp; $w_{\rm Z} = 4$&nbsp; and three ones in all columns &nbsp; &#8658; &nbsp; $w_{\rm S} = 3$. The code label&nbsp; $(w_{\rm Z}, \ w_{\rm S})$&nbsp; LDPC code uses exactly these parameters. Note the different nomenclature to the "$(n, \ k, \ m)$ Hamming code".
+
*In the considered LDPC code there are four&nbsp; "ones"&nbsp; in all rows &nbsp; &#8658; &nbsp; $w_{\rm R} = 4$&nbsp; and three&nbsp; "ones"&nbsp; in all columns &nbsp; &#8658; &nbsp; $w_{\rm C} = 3$.&nbsp; The code label&nbsp; $(w_{\rm R}, \ w_{\rm C})$&nbsp; of LDPC code uses exactly these parameters.&nbsp; Note the different nomenclature to the&nbsp; "$(n, \ k, \ m)$&nbsp; Hamming code".
 
 
*This is called a&nbsp; <b>regular LDPC code</b>, since all row weights&nbsp; $w_{\rm Z}(j)$&nbsp; for&nbsp; $1 &#8804; j &#8804; m$&nbsp; are constant equal&nbsp; $w_{\rm Z}$ and also all column weights $($with the indices&nbsp; $1 &#8804; i &#8804; n)$&nbsp; are equal: &nbsp;  $w_{\rm S}(i) = w_{\rm S} = {\rm const.}$ If this condition is not met, there is an <i>irregular LDPC code</i>.
 
  
 +
*This is called a&nbsp; &raquo;<b>regular LDPC code</b>&laquo;,&nbsp; since all row weights&nbsp; $w_{\rm R}(j)$&nbsp; for&nbsp; $1 &#8804; j &#8804; m$&nbsp; are constant equal&nbsp; $w_{\rm R}$ and also all column weights&nbsp; $($with indices&nbsp; $1 &#8804; i &#8804; n)$&nbsp; are equal: &nbsp;  $w_{\rm C}(i) = w_{\rm C} = {\rm const.}$&nbsp; If this condition is not met,&nbsp; there is an&nbsp; "irregular LDPC code".}}<br>
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Feature of LDPC codes}$&nbsp;   
 
$\text{Feature of LDPC codes}$&nbsp;   
For the code rate, one can generally&nbsp; (if&nbsp; $k$&nbsp; is not known)&nbsp; specify only one bound: &nbsp;  
+
*For the code rate,&nbsp; one can generally&nbsp; $($if&nbsp; $k$&nbsp; is not known$)$&nbsp; specify only a bound: &nbsp;  
:$$R &#8805; 1 - w_{\rm S}/w_{\rm Z}.$$  
+
:$$R &#8805; 1 - w_{\rm C}/w_{\rm R}.$$  
*The equal sign holds if all rows of&nbsp; $\mathbf{H}$&nbsp; are linearly independent &nbsp; &#8658; &nbsp; $m = n \, &ndash; k$. Then the conventional equation is obtained:  
+
*The equal sign holds if all rows of&nbsp; $\mathbf{H}$&nbsp; are linearly independent &nbsp; &#8658; &nbsp; $m = n \, &ndash; k$.&nbsp; Then the conventional equation is obtained:  
:$$R = 1 -  w_{\rm S}/w_{\rm Z} = 1 - m/n = k/n.$$
+
:$$R = 1 -  w_{\rm C}/w_{\rm R} = 1 - m/n = k/n.$$
  
*In contrast, for the code rate of an irregular LDPC code and also for the &nbsp;$(15, 11, 4)$ Hamming code sketched on the left:
+
*In contrast,&nbsp; for the code rate of an irregular LDPC code and also for the &nbsp;$(15, 11, 4)$&nbsp; Hamming code sketched on the left:
  
:$$R \ge 1 - \frac{ {\rm E}[w_{\rm S}]}{ {\rm E}[w_{\rm Z}]}
+
:$$R \ge 1 - \frac{ {\rm E}[w_{\rm C}]}{ {\rm E}[w_{\rm R}]}
\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
+
\hspace{0.5cm}{\rm with}\hspace{0.5cm}
{\rm E}[w_{\rm S}] =\frac{1}{n} \cdot  \sum_{i = 1}^{n}w_{\rm S}(i)
+
{\rm E}[w_{\rm C}] =\frac{1}{n} \cdot  \sum_{i = 1}^{n}w_{\rm C}(i)
\hspace{0.5cm}{\rm und}\hspace{0.5cm}
+
\hspace{0.5cm}{\rm and}\hspace{0.5cm}
{\rm E}[w_{\rm Z}] =\frac{1}{m} \cdot  \sum_{j = 1}^{ m}w_{\rm Z}(j)
+
{\rm E}[w_{\rm R}] =\frac{1}{m} \cdot  \sum_{j = 1}^{ m}w_{\rm R}(j)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
:Since in Hamming code&nbsp; the&nbsp; $m = n - k$&nbsp; parity-check equations are linearly independent, the &nbsp;"$&#8805;$"&ndash;sign can be replaced by the equal sign, which simultaneously means&nbsp; $R = k/n$&nbsp;.}}<br>
+
*In Hamming codes&nbsp; the&nbsp; $m = n - k$&nbsp; parity-check equations are linearly independent,&nbsp; the &nbsp;"$&#8805;$" sign can be replaced by the &nbsp;"$=$" sign, which simultaneously means:
 +
:$$R = k/n.$$}}<br>
  
For more information on this topic, see&nbsp; [[Aufgaben:Exercise_4.11:_Analysis_of_Parity-check_Matrices| "Exercise 4.11"]]&nbsp; and&nbsp; [[Aufgaben:Exercise_4.11Z:_Code_Rate_from_the_Parity-check_Matrix| " Exercise 4.11Z"]].
+
For more information on this topic,&nbsp; see&nbsp; [[Aufgaben:Exercise_4.11:_Analysis_of_Parity-check_Matrices| "Exercise 4.11"]]&nbsp; and&nbsp; [[Aufgaben:Exercise_4.11Z:_Code_Rate_from_the_Parity-check_Matrix| "Exercise 4.11Z"]].
  
 
== Two-part LDPC graph representation - Tanner graph ==
 
== Two-part LDPC graph representation - Tanner graph ==
 
<br>
 
<br>
All essential features of a LDPC ode are contained in the parity-check matrix&nbsp; $\mathbf{H} = (h_{j,\hspace{0.05cm}i})$&nbsp; and can be represented by a so-called &nbsp;''Tanner graph''&nbsp;. It is a &nbsp;<i>Bipartite Graph Representation</i>. Before we examine and analyze exemplary Tanner graphs more exactly, first still some suitable description variables must be defined:
+
All essential features of a LDPC ode are contained in the parity-check matrix&nbsp; $\mathbf{H} = (h_{j,\hspace{0.05cm}i})$&nbsp; and can be represented by a so-called &nbsp;"Tanner graph".&nbsp; It is a &nbsp;"bipartite graph representation".&nbsp; Before we examine and analyze exemplary Tanner graphs more exactly,&nbsp; first still some suitable description variables must be defined:
*The&nbsp; $n$&nbsp; columns of the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; each represent one code word bit. Since each code word bit can be both an information bit and a check bit, the neutral name&nbsp; <b>variable node</b>&nbsp; (VN) has become accepted for this. The&nbsp; $i$th codeword bit is called&nbsp; $V_i$&nbsp; and the set of all&nbsp; <i>variable nodes</i>&nbsp; (VNs) is $\{V_1, \text{...}\hspace{0.05cm} , \ V_i, \ \text{...}\hspace{0.05cm} , \ V_n\}$.<br>
+
*The&nbsp; $n$&nbsp; columns of the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; each represent one bit of a code word.&nbsp; Since each code word bit can be both an information bit and a parity bit,&nbsp; the neutral name &nbsp; &raquo;<b>variable node </b>&laquo;&nbsp; $\rm (VN)$&nbsp; has become accepted for this.&nbsp; The&nbsp; $i$<sup>th</sup>&nbsp; code word bit is called&nbsp; $V_i$&nbsp; and the set of all&nbsp; variable nodes is&nbsp; $\{V_1, \text{...}\hspace{0.05cm} , \ V_i, \ \text{...}\hspace{0.05cm} , \ V_n\}$.<br>
  
*The&nbsp; $m$&nbsp; rows of&nbsp; $\mathbf{H}$&nbsp; each describe a parity-check equation. We refer to such a parity-check equation as&nbsp; <b>check node</b>&nbsp; (CN) in the following. The set of all&nbsp; <i>check nodes</i>&nbsp; (CNs) is&nbsp; $\{C_1, \ \text{...}\hspace{0.05cm} , \ C_j, \ \text{...}\hspace{0.05cm} , \ C_m\}$, where&nbsp; $C_j$&nbsp; denotes the parity-check equation of the&nbsp; $j$th row.<br>
+
*The&nbsp; $m$&nbsp; rows of&nbsp; $\mathbf{H}$&nbsp; each describe a parity-check equation.&nbsp; We refer to such a parity-check equation in the following as &nbsp; &raquo;<b>check node</b>&laquo;&nbsp; $\rm (CN)$.&nbsp; The set of all&nbsp; check nodes is&nbsp; $\{C_1, \ \text{...}\hspace{0.05cm} , \ C_j, \ \text{...}\hspace{0.05cm} , \ C_m\}$,&nbsp; where&nbsp; $C_j$&nbsp; denotes the parity-check equation of the&nbsp; $j$<sup>th</sup>&nbsp; row.<br>
  
*In the Tanner&ndash;graph, the&nbsp; $n$&nbsp; <i>variable nodes</i>&nbsp; $V_i$&nbsp; as circles are represented as circles and the&nbsp; $m$&nbsp; <i>check nodes</i>&nbsp; $C_j$ as squares. If the matrix element in row&nbsp; $j$&nbsp; and column&nbsp; $i is \hspace{0.15cm} &#8658; \hspace{0.15cm} h_{j,\hspace{0.05cm}i} = 1$, there is an edge between the <b>variable node</b>&nbsp; $V_i$&nbsp; and the <i>check node</i>&nbsp; $C_j$.<br><br>
+
*In the Tanner graph, the&nbsp; $n$&nbsp; variable nodes&nbsp; $V_i$&nbsp; are represented as circles and the&nbsp; $m$&nbsp; check nodes&nbsp; $C_j$&nbsp; as squares.&nbsp; If the&nbsp; $\mathbf{H}$&nbsp; matrix element in row&nbsp; $j$&nbsp; and column&nbsp; $i$&nbsp; is $h_{j,\hspace{0.05cm}i} = 1$,&nbsp; there is an edge between the variable node&nbsp; $V_i$&nbsp; and the check node&nbsp; $C_j$.<br><br>
  
[[File:P ID3069 KC T 4 4 S2a v3.png|right|frame|Simple example of a Tanner graph|class=fit]]  
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:P ID3069 KC T 4 4 S2a v3.png|right|frame|Example of a Tanner graph|class=fit]]  
$\text{Example 2:}$&nbsp; To clarify the above terms, an example Tanner graph is given on the right
+
$\text{Example 2:}$&nbsp; To clarify the above terms,&nbsp; an exemplary Tanner graph is given on the right with
*the <i>Variable Nodes</i>&nbsp; (short:&nbsp; VNs)&nbsp; $V_1$&nbsp; to&nbsp; $V_4$, and<br>
+
*the variable nodes&nbsp; $V_1$&nbsp; to&nbsp; $V_4$,&nbsp; and<br>
*the <i>Check Nodes</i>&nbsp; (short:&nbsp; CNs)&nbsp; $C_1$&nbsp; to&nbsp; $C_3$.<br><br>
+
 
 +
*the check nodes&nbsp; $C_1$&nbsp; to&nbsp; $C_3$.<br><br>
  
However, the associated code has no practical meaning.  
+
However,&nbsp; the associated code has no practical meaning.  
  
 
One can see from the graph:
 
One can see from the graph:
*The code length is&nbsp; $n = 4$&nbsp; and there are&nbsp; $m = 3$&nbsp; parity-check equations. Thus the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; has dimension&nbsp; $3&times;4$.<br>
+
#The code length is&nbsp; $n = 4$&nbsp; and there are&nbsp; $m = 3$&nbsp; parity-check equations.&nbsp;
 
+
#Thus the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; has dimension&nbsp; $3&times;4$.<br>
*There are six edges in total. Thus six of the twelve elements&nbsp; $h_{j,\hspace{0.05cm}i}$&nbsp; are of&nbsp; $\mathbf{H}$&nbsp; ones.<br>
+
#There are six edges in total.&nbsp; Thus six of the twelve elements&nbsp; $h_{j,\hspace{0.05cm}i}$&nbsp; of matrix&nbsp; $\mathbf{H}$&nbsp; are&nbsp; "ones".<br>
 +
#At each check node two lines arrive &nbsp; &rArr; &nbsp; the Hamming weights of all rows are equal:  &nbsp; $w_{\rm R}(j) = 2 = w_{\rm R}$.<br>
 +
#From the nodes&nbsp; $V_1$&nbsp; and&nbsp; $V_4$&nbsp; there is only one transition to a check node each,&nbsp; from&nbsp; $V_2$&nbsp; and&nbsp; $V_3$,&nbsp; however,&nbsp; there are two.
 +
#For this reason,&nbsp; it is an&nbsp; "irregular code".<br><br>
  
*At each <i>check node</i>&nbsp; two lines arrive &nbsp; &rArr; &nbsp; The Hamming weights of all rows are equal:  &nbsp; $w_{\rm S}(j) = 2 = w_{\rm S}$.<br>
+
Accordingly,&nbsp; the parity-check matrix is:
 
 
*From nodes&nbsp; $V_1$&nbsp; and&nbsp; $V_4$&nbsp; there is only one transition to a <i>check node</i> each, from&nbsp; $V_2$&nbsp; nd&nbsp; $V_3$&nbsp; however, there are two. <br>For this reason, it is an <i>irregular code</i>.<br><br>
 
 
 
Accordingly, the parity-check matrix is:
 
  
 
::<math>{ \boldsymbol{\rm H} } =
 
::<math>{ \boldsymbol{\rm H} } =
Line 94: Line 98:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; A more practical example now follows. In the&nbsp; [[Aufgaben:Exercise_4.11:_Analysis_of_Parity-check_Matrices|"Exercise 4.11"]]&nbsp; two check matrices were analyzed:
+
$\text{Example 3:}$&nbsp; Now a more practical example follows.&nbsp; In&nbsp; [[Aufgaben:Exercise_4.11:_Analysis_of_Parity-check_Matrices|"Exercise 4.11"]]&nbsp; two parity-check matrices were analyzed:
*The encoder corresponding to the matrix&nbsp; $\mathbf{H}_1$&nbsp; is systematic. The code parameters are&nbsp; $n = 8, \ k = 4$&nbsp; and&nbsp; $m = 4$&nbsp; &#8658; &nbsp; rate $1/2$. The code is irregular because the Hamming weights are not the same for all columns. In the graph, this "irregular&nbsp; $\mathbf{H}$ matrix" is given above.<br>
+
[[File:EN_KC_T_4_4_S2b_v1.png|right|frame|Tanner graph of a regular and an irregular code|class=fit]]
  
*Bottom indicated is the "regular&nbsp; $\mathbf{H}$ matrix" corresponding to the matrix&nbsp; $\mathbf{H}_3$&nbsp; in exercise 4.11. The rows are linear combinations of the upper matrix. For this non-systematic coder, with&nbsp; $w_{\rm S} = 2$&nbsp; and&nbsp; $w_{\rm Z} = 4$&nbsp; for the rate: &nbsp; $R \ge 1 - w_{\rm S}/w_{\rm Z} = 1/2$.
+
&rArr; &nbsp; The encoder corresponding to the matrix&nbsp; $\mathbf{H}_1$&nbsp; is systematic.  
 +
#The code parameters are&nbsp; $n = 8, \ k = 4,\ m = 4$&nbsp; &#8658; &nbsp; rate&nbsp; $R=1/2$.
 +
#The code is irregular because the Hamming weights are not the same for all columns.
 +
#In the graph,&nbsp; this&nbsp; "irregular&nbsp; $\mathbf{H}$ matrix"&nbsp; is given above.<br>
  
  
[[File:P ID3071 KC T 4 4 S2b v4.png|center|frame|Tanner graph of a regular and an irregular code|class=fit]]
+
&rArr; &nbsp; Bottom indicated is the "regular&nbsp; $\mathbf{H}$ matrix" corresponding to the matrix&nbsp; $\mathbf{H}_3$&nbsp; from Exercise 4.11.
 
+
#The rows are linear combinations of the upper matrix&nbsp; $\mathbf{H}_1$.
The graph shows the corresponding Tanner&ndash;s graphs:
+
#For this non-systematic encoder holds&nbsp; $w_{\rm C} = 2, \ w_{\rm R} = 4$.  
*The left graph refers to the upper (irregular) matrix. The eight <i>variable nodes</i>&nbsp; (abbreviated VNs)&nbsp; $V_i$&nbsp; are connected to the four <i>check nodes</i>&nbsp; (abbreviated CNs)&nbsp; $C_j$&nbsp; if the element in row&nbsp; $j$&nbsp; and column&nbsp; $i \hspace{0. 15cm} &#8658; \hspace{0.15cm} h_{j,\hspace{0.05cm}i}$&nbsp; is equal&nbsp; $1$&nbsp;.<br>
+
#Thus for the rate: &nbsp; $R \ge 1 - w_{\rm C}/w_{\rm R} = 1/2$.
 +
<br clear=all>
 +
On the right you see the corresponding Tanner graphs:
 +
*The left Tanner graph refers to the upper&nbsp;  $($irregular$)$&nbsp; matrix.&nbsp; The eight variable nodes&nbsp; $V_i$&nbsp; are connected to the four check nodes&nbsp; $C_j$&nbsp; if the element in row&nbsp; $j$&nbsp; and column&nbsp; $i$&nbsp; is a&nbsp; "one" $\hspace{0.15cm} &#8658; \hspace{0.15cm} h_{j,\hspace{0.05cm}i}=1$.<br>
  
*This graph is not particularly well suited for&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Iterative_Decoding_of_LDPC.E2.80.93Codes| "iterative symbol-wise decoding"]]&nbsp;. The VNs&nbsp; $V_5, \ \text{...}\hspace{0.05cm} , \ V_8$&nbsp; are each associated with only one CN, which provides no information for decoding.<br>
+
*This graph is not particularly well suited for&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Iterative_decoding_of_LDPC_codes| $\text{iterative symbol-wise decoding}$]].&nbsp; The variable nodes&nbsp; $V_5, \ \text{...}\hspace{0.05cm} , \ V_8$&nbsp; are each associated with only one check node,&nbsp; which provides no information for decoding.<br>
  
*In the right Tanner&ndash;s graph for the regular code, you can see that here from each <i>variable node</i>&nbsp; $V_i$&nbsp; two edges come off and from each <i>check node</i>&nbsp; $C_j$&nbsp; their four. This allows information to be gained during decoding in each iteration loop.<br>
+
*In the right Tanner graph for the regular code,&nbsp; you can see that here from each variable node&nbsp; $V_i$&nbsp; two edges come off and from each check node&nbsp; $C_j$&nbsp; their four.&nbsp; This allows information to be gained during decoding in each iteration loop.<br>
  
*It can also be seen that here, in the transition from the irregular to the equivalent regular code, the ones&ndash;share increases, in the example from&nbsp; $37.5\%$&nbsp; to $50\%$. However, this statement cannot be generalized.}}<br>
+
*It can also be seen that here,&nbsp; in the transition from the irregular to the equivalent regular code,&nbsp; the proportion of&nbsp; "ones"&nbsp; increases,&nbsp; in the example from&nbsp; $37.5\%$&nbsp; to $50\%$.&nbsp; However,&nbsp; this statement cannot be generalized.}}<br>
  
 
== Iterative decoding of LDPC codes ==
 
== Iterative decoding of LDPC codes ==
 
<br>
 
<br>
Als Beispiel für die iterative LDPC&ndash;Decodierung wird nun der so genannte&nbsp; <i>Message&ndash;passing Algorithm</i>&nbsp; beschrieben. Wir verdeutlichen diesen anhand des rechten Tanner&ndash;Graphen im&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Low%E2%80%93density_Parity%E2%80%93check_Codes#Zweiteilige_LDPC.E2.80.93Graphenrepr.C3.A4sentation_.E2.80.93_Tanner|$\text{Beispiel 3}$]]&nbsp; auf der  vorherigen Seite und damit für die dort angegebene reguläre Prüfmatrix.<br>
+
As an example of iterative LDPC decoding,&nbsp; the so-called&nbsp; "message passing algorithm"&nbsp; is now described.&nbsp; We illustrate this using the right-hand Tanner graph in&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Two-part_LDPC_graph_representation_-_Tanner_graph|$\text{Example 3}$]]&nbsp; in the previous section and thus for the regular parity-check matrix given there.<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Prinzip:}$&nbsp; Beim&nbsp; <b>Message&ndash;passing Algorithm</b>&nbsp; erfolgt abwechselnd (oder iterativ) ein Informationsaustausch zwischen den <i>Variable Nodes </i>&nbsp; (VNs)&nbsp; $V_1, \ \text{...}\hspace{0.05cm} , \ V_n$&nbsp; und den <i>Check Nodes </i>&nbsp; (CNs)&nbsp; $C_1 , \ \text{...}\hspace{0.05cm}  , \ C_m$.}}<br>
+
$\text{Principle:}$&nbsp; In the&nbsp; &raquo;<b>message passing algorithm</b>&laquo;&nbsp; there is an alternating&nbsp; $($or iterative$)$&nbsp; exchange of information between the  variable nodes&nbsp; $V_1, \ \text{...}\hspace{0.05cm} , \ V_n$&nbsp; and the check nodes&nbsp; $C_1 , \ \text{...}\hspace{0.05cm}  , \ C_m$.}}<br>
  
[[File:P ID3075 KC T 4 4 S3a v1.png|center|frame|Iterative Decodierung von LDPC–Codes|class=fit]]
+
[[File:EN_KC_T_4_4_S3a_v1.png|right|frame|Iterative decoding of LDPC codes|class=fit]]
  
Für das betrachtete Beispiel gilt:
+
For the regular LDPC code under consideration:
*Es gibt&nbsp; $n = 8$&nbsp; <i>Variable Nodes </i> und&nbsp; $m = 4$&nbsp; <i>Check Nodes </i>. Da ein regulärer LDPC&ndash;Code vorliegt, gehen von jedem <i>Variable Node </i>&nbsp; $d_{\rm V} = 2$&nbsp; Verbindungslinien zu einem <i>Check Node </i>&nbsp; und jeder <i>Check Node </i>&nbsp;  ist mit&nbsp; $d_{\rm C} = 4$&nbsp; <i>Variable Nodes </i> verbunden.
+
#There are&nbsp; $n = 8$&nbsp; variable nodes and&nbsp; $m = 4$&nbsp; check nodes.  
 +
# From each variable node go&nbsp; $d_{\rm V} = 2$&nbsp; connecting lines to a check node  and each check node  is connected to&nbsp; $d_{\rm C} = 4$&nbsp; variable nodes.
 +
#The variable node degree&nbsp; $d_{\rm V}$&nbsp; is equal to the Hamming weight of each column&nbsp; $(w_{\rm C})$&nbsp; and for the check node degree holds:&nbsp; $d_{\rm C} = w_{\rm R}$&nbsp; (Hamming weight of each row).
 +
#In the following description we use the terms&nbsp; "neighbors of a variable node" &nbsp; &#8658; &nbsp; $N(V_i)$&nbsp; and&nbsp; "neighbors of a check node" &nbsp; &#8658; &nbsp; $N(C_j)$.
 +
#We restrict ourselves here to implicit definitions:
  
*Der <i>Variable Node Degree</i>&nbsp; $d_{\rm V}$&nbsp; ist gleich dem Hamming&ndash;Gewicht einer jeden Spalte&nbsp; $(w_{\rm S})$&nbsp; und für den <i>Check Node Degree</i>&nbsp; gilt: &nbsp; $d_{\rm C} = w_{\rm Z}$ (Hamming&ndash;Gewicht einer jeden Zeile).
+
::$$N(V_1) = \{ C_1, C_2\}\hspace{0.05cm},$$
 +
::$$ N(V_2) = \{ C_3, C_4\},$$
 +
:::::$$\text{........}$$
 +
::$$N(V_8) = \{ C_1, C_4\},$$
 +
::$$N(C_1) = \{ V_1, V_4, V_5, V_8\},$$
 +
:::::$$\text{........}$$
 +
::$$N(C_4) = \{ V_2, V_3, V_6, V_8\}.$$
  
*In der folgenden Beschreibung verwenden wir auch die Begriffe <i>Nachbarn eines Variable Nodes</i> &nbsp; &#8658; &nbsp; $N(V_i)$&nbsp; sowie <i>Nachbarn eines Check Nodes</i> &nbsp; &#8658; &nbsp; $N(C_j)$, wobei wir uns hier auf  implizite Definitionen beschränken:
+
{{GraueBox|TEXT=
 +
[[File:P ID3085 KC T 4 4 S3c v2.png|right|frame|Information exchange between variable and check nodes]] 
 +
$\text{Example 4:}$The sketch from&nbsp; [Liv15]<ref name='Liv15'>Liva, G.:&nbsp; Channels Codes for Iterative Decoding.&nbsp; Lecture notes, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.</ref>&nbsp; shows the information exchange
 +
*between the yariable node&nbsp; $V_i$&nbsp; and the check node&nbsp; $C_j$,
  
::<math>N(V_1) = \{ C_1, C_2\}\hspace{0.05cm}, \hspace{0.3cm}N(V_2) = \{ C_3, C_4\}\hspace{0.05cm}, \hspace{0.05cm}.\hspace{0.05cm}.\hspace{0.05cm}.\hspace{0.15cm},\hspace{0.3cm}N(V_8) = \{ C_1, C_4\}\hspace{0.05cm},</math>
+
*expressed by&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Reliability_information_-_Log_likelihood_ratio| $\text{log likelihood ratios}$]]    &nbsp; $(L$&nbsp; values for short$)$.
::<math>N(C_1) = \{ V_1, V_4, V_5, V_8\}\hspace{0.05cm}, \hspace{0.05cm}.\hspace{0.05cm}.\hspace{0.05cm}.\hspace{0.15cm}\hspace{0.05cm}, \hspace{0.3cm}N(C_4) = \{ V_2, V_3, V_6, V_8\}\hspace{0.05cm}.</math>
 
  
[[File:P ID3085 KC T 4 4 S3c v2.png|right|frame|Informationsaustausch zwischen <i>Variable Nodes</i>&nbsp; und <i>Check Nodes </i>]]
 
{{GraueBox|TEXT= 
 
$\text{Beispiel 4:}$&nbsp; Die Skizze aus&nbsp; [Liv15]<ref name='Liv15'>Liva, G.: ''Channels Codes for Iterative Decoding.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2015.</ref>&nbsp; zeigt den Austausch von Information zwischen dem <i>Variable Node</i>&nbsp; $V_i$&nbsp; und dem <i>Check Node</i>&nbsp; $C_j$&nbsp; &ndash; ausgedrückt durch&nbsp; [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Zuverl.C3.A4ssigkeitsinformation_.E2.80.93_Log_Likelihood_Ratio| Log&ndash;Likelihood Ratios]]&nbsp; (kurz: $L$&ndash;Werte).
 
  
Der Informationsaustausch geschieht in zwei Richtungen:
+
The exchange of information happens in two directions:
*<b>$L(V_i &#8594; C_j)$</b>:&nbsp; Extrinsische Information aus&nbsp; $V_i$&ndash;Sicht, &nbsp;Apriori&ndash;Information aus&nbsp; $C_j$&ndash;Sicht.<br>
+
*$L(V_i &#8594; C_j)$:&nbsp; Extrinsic information from&nbsp; $V_i$&nbsp; point of view, &nbsp; a-priori information from&nbsp; $C_j$&nbsp; point of view.<br>
  
*<b>$L(C_j &#8594; V_i)$</b>:&nbsp; Extrinsische Information aus&nbsp; $C_j$&ndash;Sicht, &nbsp;Apriori&ndash;Information aus&nbsp; $V_i$&ndash;Sicht.}}
+
*<b>$L(C_j &#8594; V_i)$</b>:&nbsp; Extrinsic information from&nbsp; $C_j$&nbsp; point of view, &nbsp;a-priori information from&nbsp; $V_i$&nbsp; point of view.}}
  
  
Die Beschreibung des Decodieralgorithmus wird fortgesetzt:<br>
+
The description of the decoding algorithm continues:<br>
  
<b>Initialisierung:</b>&nbsp; Zu Beginn der Decodierung erhalten die <i>Variable Nodes</i>&nbsp; (VNs) keine Apriori&ndash;Information von den <i>Check Nodes</i>&nbsp; (CNs), und es gilt für&nbsp; $1 &#8804; i &#8804; n \text{:}$ &nbsp;
+
<b>(1)&nbsp; Initialization:</b>&nbsp; At the beginning of decoding,&nbsp; the variable nodes receive no a-priori information from the check nodes,&nbsp; and it applies for&nbsp; $1 &#8804; i &#8804; n \text{:}$ &nbsp;
 
:$$L(V_i &#8594; C_j) = L_{\rm K}(V_i).$$  
 
:$$L(V_i &#8594; C_j) = L_{\rm K}(V_i).$$  
  
Wie aus der Grafik am Seitenbeginn ersichtlich, ergeben sich diese Kanal&ndash;$L$&ndash;Werte&nbsp; $L_{\rm K}(V_i)$&nbsp; aus den Empfangswerten&nbsp; $y_i$.<br><br>
+
As can be seen from the graph at the top of the page,&nbsp; these channel log likelihood values&nbsp; $L_{\rm K}(V_i)$&nbsp; result from the received values&nbsp; $y_i$.<br><br>
  
<b>Check Node Decoder</b>:&nbsp; Jeder Knoten&nbsp; $C_j$&nbsp; repräsentiert eine Prüfgleichung. So steht&nbsp; $C_1$&nbsp; für die Gleichung&nbsp; $V_1 + V_4 + V_5 + V_8 = 0$. Man erkennt den Zusammenhang zur extrinsischen Information bei der symbolweisen Decodierung des <i>Single Parity&ndash;check Codes</i>.  
+
<b>(2)&nbsp; Check Node Decoder (CND)</b>:&nbsp; Each node&nbsp; $C_j$&nbsp; represents one parity-check equation.&nbsp; Thus&nbsp; $C_1$&nbsp; represents the equation&nbsp; $V_1 + V_4 + V_5 + V_8 = 0$.&nbsp; One can see the connection to extrinsic information in the symbol-wise decoding of the single parity&ndash;check code.  
  
In Analogie zur Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte| Zur Berechnung der extrinsischen L&ndash;Werte]]&nbsp; und zur&nbsp; [[Aufgaben:Aufgabe_4.4:_Extrinsische_L–Werte_beim_SPC|Aufgabe 4.4]]&nbsp; gilt somit für den extrinsischen&nbsp; $L$&ndash;Wert von&nbsp; $C_j$&nbsp; und gleichzeitig für die Apriori&ndash;Information bezüglich&nbsp; $V_i$:
+
In analogy to the section&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"Calculation of extrinsic log likelihood ratios"]]&nbsp; and to&nbsp; [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC|"Exercise 4.4"]]&nbsp; thus applies to the extrinsic log likelihood value of&nbsp; $C_j$&nbsp; and at the same time to the a-priori information concerning&nbsp; $V_i$:
  
 
::<math>L(C_j \rightarrow V_i) = 2 \cdot  {\rm tanh}^{-1}\left  [ \prod\limits_{V \in N(C_j)\hspace{0.05cm},\hspace{0.1cm} V \ne V_i} \hspace{-0.35cm}{\rm tanh}\left [L(V \rightarrow C_j \right ] /2) \right ]
 
::<math>L(C_j \rightarrow V_i) = 2 \cdot  {\rm tanh}^{-1}\left  [ \prod\limits_{V \in N(C_j)\hspace{0.05cm},\hspace{0.1cm} V \ne V_i} \hspace{-0.35cm}{\rm tanh}\left [L(V \rightarrow C_j \right ] /2) \right ]
Line 155: Line 174:
  
  
<b>Variable Node Decoder</b>:&nbsp; Im Gegensatz zum <i>Check Node Decoder</i>&nbsp; (CND) besteht beim <i>Variable Node Decoder</i>&nbsp; (VND) eine Verwandtschaft zur Decodierung eines <i>Repetition Codes</i>, weil alle mit&nbsp; $V_i$&nbsp; verbundenen <i>Check Nodes</i>&nbsp; $C_j$&nbsp; demselben Bit  entsprechen &nbsp; &#8658; &nbsp; dieses Bit wird quasi&nbsp; $d_{\rm V}$&nbsp; mal wiederholt.<br>
+
<b>(3)&nbsp; Variable Node Decoder (VND)</b>:&nbsp; In contrast to the check node decoder,&nbsp; the variable node decoder is related to the decoding of a repetition code because all check nodes connected to&nbsp; $V_i$&nbsp; correspond to the same bit&nbsp; $C_j$&nbsp; &#8658; &nbsp; this bit is  quasi repeated&nbsp; $d_{\rm V}$&nbsp; times.<br>
  
In Analogie zu  zur Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte| Zur Berechnung der extrinsischen L&ndash;Werte]]&nbsp; gilt für den extrinsischen&nbsp; $L$&ndash;Wert von&nbsp; $V_i$&nbsp; und gleichzeitig für die Apriori&ndash;Information bezüglich&nbsp; $C_j$:
+
In analogy to to the section&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios| "Calculation of extrinsic log likelihood ratios"]]&nbsp; applies to the extrinsic log likelihood value of&nbsp; $V_i$&nbsp; and at same time to the a-priori information concerning&nbsp; $C_j$:
 +
[[File:EN_KC_T_4_4_S3b_v4.png|right|frame|Relationship between LDPC decoding and serial turbo decoding |class=fit]]
  
 
::<math>L(V_i  \rightarrow C_j) = L_{\rm K}(V_i) + \hspace{-0.55cm} \sum\limits_{C \hspace{0.05cm}\in\hspace{0.05cm} N(V_i)\hspace{0.05cm},\hspace{0.1cm} C \hspace{0.05cm}\ne\hspace{0.05cm} C_j} \hspace{-0.55cm}L(C \rightarrow V_i)  
 
::<math>L(V_i  \rightarrow C_j) = L_{\rm K}(V_i) + \hspace{-0.55cm} \sum\limits_{C \hspace{0.05cm}\in\hspace{0.05cm} N(V_i)\hspace{0.05cm},\hspace{0.1cm} C \hspace{0.05cm}\ne\hspace{0.05cm} C_j} \hspace{-0.55cm}L(C \rightarrow V_i)  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Das folgende Schaubild des beschriebenen Decodieralgorithmus' für LDPC&ndash;Codes zeigt Ähnlichkeiten mit der Vorgehensweise bei&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Turbocodes#Seriell_verkettete_Turbocodes_.E2.80.93_SCCC| seriell verketteten Turbocodes]].
+
The chart on the right describes the decoding algorithm for LDPC codes.&nbsp;  
 +
*It shows similarities with the decoding method for&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes#Serial_concatenated_turbo_codes_.E2.80.93_SCCC| $\text{serial concatenated turbo codes}$]].
  
[[File:P ID3078 KC T 4 4 S3b v3.png|center|frame|Zusammenhang zwischen LDPC–Decodierung und serieller Turbo–Decodierung|class=fit]]
+
*To establish a complete analogy between LDPC and turbo decoding,&nbsp; an&nbsp; "interleaver"&nbsp; as well as a "de-interleaver"&nbsp; are also drawn here between&nbsp; $\rm VND$&nbsp; and&nbsp; $\rm CND$.  
  
* Um eine vollständige Analogie zwischen der LDPC&ndash; und der Turbodecodierung herzustellen, ist auch hier zwischen dem <i>Variable Node Decoder</i>&nbsp; (VND) und dem <i>Check Node Decoder</i>&nbsp; (CND) ein "<i>Interleaver</i>&nbsp;"&nbsp; sowie ein "<i>De&ndash;Interleaver</i>&nbsp;"&nbsp; eingezeichnet.  
+
*Since these are not real system components,&nbsp; but only analogies,&nbsp; we have enclosed these terms in quotation marks.<br>
*Da es sich hierbei nicht um reale Systemkomponenten handelt, sondern nur um Analogien, haben wir diese Begriffe in Hochkommata gesetzt.<br>
+
<br clear=all>
 +
== Performance of regular LDPC codes ==
 +
<br>
 +
We now consider as in&nbsp; [Str14]<ref name='Str14'>Strutz, T.:&nbsp; Low-density parity-check codes - An introduction.&nbsp; Lecture material.  Hochschule für Telekommunikation, Leipzig, 2014. PDF document.</ref>&nbsp; five regular LDPC codes.&nbsp; The graph shows the bit error rate&nbsp; $\rm (BER)$&nbsp; depending on the AWGN parameter&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0$.&nbsp; The curve for uncoded transmission is also plotted for comparison.<br>
 +
[[File:EN_KC_T_4_4_S4a_v2.png|right|frame|Bit error rate of LDPC codes]]
  
 +
These LDPC codes exhibit the following properties:
 +
*The parity-check matrices&nbsp; $\mathbf{H}$&nbsp; each have&nbsp; $n$&nbsp; columns and&nbsp; $m = n/2$&nbsp; linearly independent rows.&nbsp; In each row there are&nbsp; $w_{\rm R} = 6$&nbsp; "ones"&nbsp; and in each column&nbsp; $w_{\rm C} = 3$&nbsp; "ones".<br>
  
== Leistungsfähigkeit regulärer LDPC–Codes ==
+
*The share of&nbsp; "ones"&nbsp; is&nbsp; $w_{\rm R}/n = w_{\rm C}/m$,&nbsp; so for large code word length&nbsp; $n$&nbsp; the classification "low&ndash;density" is justified.&nbsp; For the red curve&nbsp; $(n = 2^{10})$&nbsp; the share of&nbsp; "ones"&nbsp; is&nbsp; $0.6\%$.<br>
<br>
 
[[File:P ID3079 KC T 4 4 S4a v5.png|right|frame|Bitfehlerrate von LDPC–Codes]]
 
Wir betrachten nun wie in&nbsp; [Str14]<ref name='Str14'>Strutz, T.: ''Low–density Parity–check Codes – Eine Einführung''. Vorlesungsmaterial.  Hochschule für Telekommunikation, Leipzig, 2014. PDF-Dokument [http://www1.hft-leipzig.de/strutz/Kanalcodierung/ldpc_tutorial.pdf PDF-Dokument].</ref>&nbsp; fünf reguläre LDPC&ndash;Codes. Die Grafik zeigt die Bitfehlerrate&nbsp; $\rm (BER)$&nbsp; abhängig vom AWGN&ndash;Parameter&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0$. Zum Vergleich ist auch die Kurve für uncodierte Übertragung  eingezeichnet.<br>
 
  
Diese LDPC&ndash;Codes  zeigen folgende Eigenschaften:
+
*The rate of all codes is&nbsp; $R = 1 - w_{\rm C}/w_{\rm R} = 1/2$.&nbsp; However,&nbsp; because of the linear independence of the matrix rows,&nbsp; $R = k/n$&nbsp; with the information word length&nbsp; $k = n - m = n/2$&nbsp; also holds.<br><br>
*Die Prüfmatrizen&nbsp; $\mathbf{H}$&nbsp; weisen jeweils&nbsp; $n$&nbsp; Spalten und&nbsp; $m = n/2$&nbsp; linear voneinander unabhängige Zeilen auf. In jeder Zeile gibt es&nbsp; $w_{\rm Z} = 6$&nbsp; Einsen und in jeder Spalte&nbsp; $w_{\rm S} = 3$&nbsp; Einsen.<br>
 
  
*Der Einsen&ndash;Anteil beträgt&nbsp; $w_{\rm Z}/n = w_{\rm S}/m$, so dass bei großer Codewortlänge&nbsp; $n$&nbsp; die Klassifizierung "<i>Low&ndash;density</i>" gerechtfertigt ist. Für die rote Kurve&nbsp; $(n = 2^{10})$&nbsp; beträgt der Einsen&ndash;Anteil&nbsp; $0.6\%$.<br>
+
From the graph you can see:
 +
*The bit error rate is smaller the longer the code:
 +
:*For&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 2 \ \rm dB$&nbsp; and&nbsp; $n = 2^8 = 256$&nbsp; we get&nbsp; ${\rm BER} \approx 10^{-2}$.  
 +
:*For&nbsp; $n = 2^{12} = 4096$&nbsp; on the other hand,&nbsp; only&nbsp; ${\rm BER} \approx 2 \cdot 10^{-7}$.<br>
  
*Die Rate aller Codes beträgt&nbsp; $R = 1 - w_{\rm S}/w_{\rm Z} = 1/2$. Wegen der linearen Unabhängigkeit der Matrixzeilen gilt aber auch&nbsp; $R = k/n$&nbsp; mit der Informationswortlänge&nbsp; $k = n - m = n/2$.<br><br>
+
*With&nbsp; $n = 2^{15} = 32768$&nbsp; $($violet curve$)$&nbsp; one needs &nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0 \approx 1.35 \ \rm dB$&nbsp; for&nbsp; ${\rm BER} = 10^{-5}$.
 +
 +
*The distance from the Shannon bound &nbsp;$(0.18 \ \rm dB$&nbsp; for&nbsp; $R = 1/2$&nbsp; and BPSK$)$&nbsp; is approximately&nbsp; $1.2 \ \rm dB$.
  
Aus der Grafik  erkennt man:
 
*Die Bitfehlerrate ist um so kleiner, je länger der  Code ist:
 
:*Für&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 2 \ \rm dB$&nbsp; und&nbsp; $n = 2^8 = 256$&nbsp; ergibt sich&nbsp; ${\rm BER} \approx 10^{-2}$.
 
:*Für&nbsp; $n = 2^{12} = 4096$&nbsp; dagegen nur&nbsp; ${\rm BER} \approx 2 \cdot 10^{-7}$.<br>
 
  
*Mit&nbsp; $n = 2^{15} = 32768$&nbsp; (violette Kurve) benötigt man&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0 \approx 1.35 \ \rm dB$&nbsp; für&nbsp; ${\rm BER} = 10^{-5}$.
+
[[File:EN_KC_T_4_4_S4b_v1.png|left|frame| Waterfall region & error floor]]  
*Der Abstand von der  Shannon&ndash;Grenze &nbsp;$(0.18 \ \rm dB$&nbsp; für&nbsp; $R = 1/2$&nbsp; und BPSK$)$ beträgt ca.&nbsp; $1.2 \ \rm dB$.
+
<br><br>The curves for&nbsp; $n = 2^8$&nbsp; to&nbsp; $n = 2^{10}$&nbsp; also point to an effect we already noticed with the&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes#Performance_of_the_turbo_codes| $\text{turbo codes}$]]&nbsp; $($see qualitative graph on the left$)$:
<br clear=all>
 
[[File:P ID3080 KC T 4 4 S4b v4.png|right|frame| "Waterfall Region & Error Floor"]]  
 
Die Kurven für&nbsp; $n = 2^8$&nbsp; bis&nbsp; $n = 2^{10}$&nbsp; weisen zudem auf einen Effekt hin, den wir schon bei den&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Turbocodes#Leistungsf.C3.A4higkeit_der_Turbocodes| Turbocodes]]&nbsp; festgestellt haben:
 
  
*Zuerst fällt die BER&ndash;Kurve steil ab &nbsp; &#8658; &nbsp; "Waterfall Region".  
+
#First,&nbsp; the BER curve drops steeply &nbsp; &#8658; &nbsp; "waterfall region".  
*Danach folgt ein Knick und ein Verlauf mit deutlich geringerer Steigung  &nbsp; &#8658; &nbsp; "Error Floor".  
+
#That is followed by a kink and a course with a significantly lower slope &nbsp; &#8658; &nbsp; "error floor".  
*Die qualitative untere Grafik verdeutlicht den Effekt, der natürlich nicht abrupt einsetzt (Übergang nicht eingezeichnet).<br>
+
#The graphic illustrates the effect,&nbsp; which of course does not start abruptly&nbsp; $($transition not drawn$)$.<br>
  
  
Ein (LDPC&ndash;) Code ist immer dann als gut zu bezeichnen, wenn
+
An&nbsp; $($LDPC$)$&nbsp; code is considered good whenever
* die BER&ndash;Kurve nahe der Shannon&ndash;Grenze steil abfällt,<br>
+
* the&nbsp; $\rm BER$&nbsp; curve drops steeply near the Shannon bound,<br>
  
* der "Error Floor"  bei sehr niedrigen BER&ndash;Werten liegt (Ursachen hierfür siehe nächste Seite,&nbsp; $\text{Beispiel 5)}$,<br>
+
* the error floor is at very low&nbsp; $\rm BER$&nbsp; values&nbsp; $($for causes see next section and&nbsp; $\text{Example 5)}$,<br>
  
* die  Anzahl der erforderlichen Iterationen handhabbar ist, und<br>
+
* the number of required iterations is manageable,&nbsp; and<br>
  
* diese Eigenschaften nicht erst bei nicht mehr praktikablen Blocklängen erreicht werden.<br>
+
* these properties are not reached only at no more practicable block lengths.<br>
 
<br clear=all>
 
<br clear=all>
  
== Leistungsfähigkeit irregulärer LDPC–Codes ==
+
== Performance of irregular LDPC codes ==
 
<br>
 
<br>
[[File:P ID3087 KC T 4 4 S5a v3.png|right|frame|LDPC–Codes im Vergleich zur Shannon–Grenze]]  
+
[[File:KC T 4 4 S5b v3.png|right|frame|LDPC codes compared <br>to the Shannon bound]]  
In diesem Kapitel wurden vorwiegend reguläre LDPC&ndash;Codes behandelt, auch im&nbsp; $\rm BER$&ndash;Diagramm auf der letzten Seite. Die Ignoranz der irregulären LDPC&ndash;Codes ist nur der Kürze dieses Kapitels geschuldet, nicht deren Leistungsfähigkeit. Im Gegenteil:
+
This chapter has dealt mainly with regular LDPC codes, including in the&nbsp; $\rm BER$&nbsp; diagram in the last section.&nbsp; The ignorance of irregular LDPC codes is only due to the brevity of this chapter,&nbsp; not their performance.
* Irreguläre LDPC&ndash;Codes gehören zu den besten Kanalcodes überhaupt.  
+
*Das gelbe Kreuz in der Grafik liegt praktisch auf der informationstheoretischen Grenzkurve für binäre Eingangssignale (grüne Kurve, mit&nbsp; $\rm BPSK$ beschriftet).  
+
On the contrary:
*Die Codewortlänge dieses irregulären Rate&ndash;$1/2$&ndash;Codes von [CFRU01]<ref>Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.: ''On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit.'' – In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.</ref> beträgt&nbsp; $n = 2 \cdot 10^6$.  
+
* Irregular LDPC codes are among the best channel codes ever.
*Daraus ist schon ersichtlich, dass dieser Code nicht für den praktischen Einsatz gedacht war, sondern sogar für einen Rekordversuch getunt wurde.<br>
+
 +
*The yellow cross is practically on the information-theoretical limit curve for binary input signals&nbsp; $($green &nbsp; $\rm BPSK$&nbsp; curve$)$.  
 +
 
 +
*The code word length of this irregular rate&nbsp; $1/2$&nbsp; code from&nbsp; [CFRU01]<ref>Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.:&nbsp; On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit.&nbsp; - In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58-60.</ref> is&nbsp; $n = 2 \cdot 10^6$.
 +
 +
*From this it is already obvious that this code was not intended for practical use,&nbsp; but was even tuned for a record attempt:<br>
  
  
Bei der LDPC&ndash;Codekonstruktion geht man ja stets von der Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; aus. Für den gerade genannten Code hat diese die Dimension&nbsp; $1 \cdot 10^6 &times; 2 \cdot 10^6$, beinhaltet also&nbsp; $2 \cdot 10^{12}$&nbsp; Matrixelemente.
+
<u>Note:</u>
 +
#The LDPC code construction always starts from the parity-check matrix&nbsp; $\mathbf{H}$.&nbsp;  
 +
#For the just mentioned code this has the dimension&nbsp; $1 \cdot 10^6 &times; 2 \cdot 10^6$,&nbsp; thus contains&nbsp; $2 \cdot 10^{12}$&nbsp; matrix elements.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Füllt man die Matrix per Zufallsgenerator mit (wenigen) Einsen &nbsp; &#8658; &nbsp; "<i>Low&ndash;density</i>", so spricht man von&nbsp; <b>unstrukturiertem Code&ndash;Design</b>. Dies kann zu langen Codes mit guter Performance führen, manchmal aber auch zu folgenden Problemen:
+
$\text{Conclusion:}$&nbsp; Filling the matrix randomly with&nbsp; $($few$)$&nbsp; "ones" &nbsp; &#8658; &nbsp; "low&ndash;density"&nbsp; is called&nbsp; &raquo;<b>unstructured code design</b>&laquo;.  
*Die Komplexität des Coders kann zunehmen, da trotz Modifikation der Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; sichergestellt werden muss, dass die Generatormatrix&nbsp; $\mathbf{G}$&nbsp; systematisch ist.<br>
 
  
*Es erfordert eine aufwändige Hardware&ndash;Realisierung des iterativen Decoders.<br>
+
This can lead to long codes with good performance,&nbsp; but sometimes also to the following problems:
 +
*The complexity of the encoder can increase,&nbsp; because despite modification of the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; it must be ensured that the generator matrix&nbsp; $\mathbf{G}$&nbsp; is systematic.<br>
  
*Es kommt zu einem "Error Floor" durch einzelne Einsen in einer Spalte (oder Zeile) sowie durch kurze Schleifen &nbsp; &rArr; &nbsp; siehe nachfolgendes Beispiel.}}<br><br>
+
*It requires a complex hardware&ndash;realization of the iterative decoder.<br>
 +
 
 +
*It comes to an&nbsp; "error floor"&nbsp; by single&nbsp; "ones"&nbsp; in a column&nbsp; $($or row$)$&nbsp; as well as by short loops &nbsp; &rArr; &nbsp; see following example.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp; Im linken Teil der Grafik ist der Tanner&ndash;Graph für einen regulären LDPC&ndash;Code mit der Prüfmatrix&nbsp; $\mathbf{H}_1$&nbsp; dargestellt. Grün eingezeichnet ist ein Beispiel für die minimale Schleifenlänge (englisch:&nbsp; <i>Girth</i>). Diese Kenngröße gibt an, wieviele Kanten man mindestens durchläuft, bis man von einem <i>Check Node</i>&nbsp; $C_j$&nbsp; wieder bei diesem landet $($oder von&nbsp; $V_i$&nbsp; zu&nbsp; $V_i)$. Im linken Beispiel ergibt sich die minimale Kantenlänge&nbsp; $6$, zum Beispiel der Weg&nbsp; $C_1 &#8594; V_1 &#8594; C_3 &#8594; V_5 &#8594; C_2 &#8594; V_2 &#8594; C_1$.<br>
+
$\text{Example 5:}$&nbsp; The left part of the graph shows the Tanner graph for a regular LDPC code with the parity-check matrix&nbsp; $\mathbf{H}_1$.  
 +
[[File:P ID3088 KC T 4 4 S4c v3.png|right|frame|Definition of a "girth"|class=fit]]
 +
*Drawn in green is an example of the&nbsp; "minimum girth".  
  
[[File:P ID3088 KC T 4 4 S4c v3.png|center|frame|Zur Definition eines „Girth”|class=fit]]
+
*This parameter indicates the minimum number of edges one passes through before ending up at a check node&nbsp; $C_j$&nbsp; again $($or from&nbsp; $V_i$&nbsp; to&nbsp; $V_i)$.  
  
Vertauscht man in der Prüfmatrix nur zwei Einsen &nbsp; &#8658; &nbsp; Matrix&nbsp; $\mathbf{H}_2$, so wird der  LDPC&ndash;Code irregulär:
+
*In the left example,&nbsp; the minimum edge length&nbsp; $6$,&nbsp; for example,&nbsp; results in the path&nbsp;  
*Die minimale Schleifenlänge ist nun&nbsp; $4$, von&nbsp; $C_1 &#8594; V_4 &#8594; C_4 &#8594; V_6 &#8594; C_1$.
+
:$$C_1 &#8594; V_1 &#8594; C_3 &#8594; V_5 &#8594; C_2 &#8594; V_2 &#8594; C_1.$$
*Ein kleiner <i>Girth</i>&nbsp; führt zu einem ausgeprägten  "Error Floor" im BER&ndash;Verlauf.}}<br>
 
  
== Einige Anwendungsgebiete für LDPC–Codes ==
+
&rArr; &nbsp; Swapping only two&nbsp; "ones"&nbsp; in the parity-check matrix &nbsp; &#8658; &nbsp; matrix&nbsp; $\mathbf{H}_2$,&nbsp; the LDPC code becomes irregular:
 +
*The minimum loop length is now&nbsp; $4$,&nbsp; from&nbsp;
 +
:$$C_1 &#8594; V_4 &#8594; C_4 &#8594; V_6 &#8594; C_1.$$
 +
*A small&nbsp; "girth"&nbsp; leads to a pronounced&nbsp; "error floor"&nbsp; in the BER process.}}<br>
 +
 
 +
== Some application areas for LDPC codes ==
 
<br>
 
<br>
[[File:P ID3081 KC T 4 4 S5a v3.png|right|frame|Einige standardisierte LDPC–Codes im Vergleich zur Shannon–Grenze]]  
+
In the adjacent diagram,&nbsp; two communication standards based on structured&nbsp; $($regular$)$&nbsp; LDPC codes are entered in comparison to the AWGN channel capacity.<br>
Im nebenstehenden Schaubild sind im Vergleich zur AWGN&ndash;Kanalkapazität zwei Kommunikations&ndash;Standards eingetragen, die auf strukturierten  (regulären) LDPC&ndash;Codes basieren.<br>
+
[[File:KC T 4 4 S5b v3.png|right|frame|Some standardized LDPC codes compared to the Shannon bound]]  
 +
 
 +
It should be noted that the bit error rate&nbsp; ${\rm BER}=10^{-5}$&nbsp; is the basis for the plotted standardized codes,&nbsp; while the capacity curves&nbsp; $($according to information theory$)$&nbsp; are for&nbsp; "zero"&nbsp; error probability.
 +
 
 +
&rArr; &nbsp; Red crosses indicate the &nbsp; &raquo;'''LDPC codes according to CCSDS'''&laquo; &nbsp; developed for distant space missions:
 +
*This class provides codes of rate&nbsp; $1/3$,&nbsp; $1/2$,&nbsp; $2/3$&nbsp; and&nbsp; $4/5$.
 +
 +
*All points are located&nbsp; $\approx 1 \ \rm dB$&nbsp; to the right of the capacity curve for binary input&nbsp; $($green curve "BPSK"$)$.<br>
  
Anzumerken ist, dass für die eingezeichneten standardisierten Codes die Bitfehlerrate ${\rm BER}=10^{-5}$ zugrunde liegt, während die Kapazitätskurven (entsprechend der Informationstheorie) für die Fehlerwahrscheinlichkeit "Null" gelten.
 
  
Rote Kreuze zeigen die&nbsp; '''LDPC&ndash;Codes nach CCSDS'''&nbsp; (<i>Consultative Comittee for Space Data Systems</i>), entwickelt für ferne Weltraummissionen:
+
&rArr; &nbsp; The blue rectangles mark the &nbsp; &raquo;'''LDPC codes for DVB&ndash;T2/S2'''&laquo;. &nbsp;
*Diese Klasse stellt Codes der Rate&nbsp; $1/3$,&nbsp; $1/2$,&nbsp; $2/3$&nbsp; und&nbsp; $4/5$ bereit.
 
*Alle Punkte liegen ca.&nbsp; $1 \ \rm dB$&nbsp; rechts von der Kapazitätskurve für binären Eingang (grüne Kurve "BPSK").<br>
 
  
 +
The abbreviations stand for &nbsp;  "Digital Video Broadcasting &ndash; Terrestrial"&nbsp; resp.&nbsp; "Digital Video Broadcasting &ndash; Satellite",&nbsp; and the&nbsp; "$2$"&nbsp; marking makes it clear that each is the second generation&nbsp; $($from 2005 resp. 2009$)$.
 +
*The standard is defined by&nbsp; $22$&nbsp; test matrices providing rates from about&nbsp; $0.2$&nbsp; up to&nbsp; $19/20$.
 +
 +
*Each eleven variants apply to the code length&nbsp; $n= 64800$&nbsp; bit&nbsp; $($"Normal FECFRAME"$)$&nbsp; and&nbsp; $16200$&nbsp; bit&nbsp; $($"Short FECFRAME"$),$&nbsp;  respectively.
 +
 +
*Combined with&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#Other_signal_space_constellations| $\text{high order modulation methods}$]]&nbsp; $($8PSK,&nbsp;  16&ndash;ASK/PSK, ...&nbsp;$)$&nbsp; the codes are characterized by a large spectral efficiency.<br>
  
Die blauen Rechtecke markieren die&nbsp; '''LDPC&ndash;Codes für DVB&ndash;T2/S2'''. Die Abkürzungen stehen für  "Digital Video Broadcasting &ndash; Terrestrial" bzw. "Digital Video Broadcasting &ndash; Satellite", und die Kennzeichnung  "$2$" macht deutlich, dass es sich jeweils um die  zweite Generation (von 2005 bzw. 2009)  handelt.
 
*Der Standard ist durch&nbsp; $22$&nbsp; Prüfmatrizen definiert, die Raten von etwa&nbsp; $0.2$&nbsp; bis zu&nbsp; $19/20$&nbsp; zur Verfügung stellen.
 
*Je elf Varianten gelten für die  Codelänge&nbsp; $64800$&nbsp; Bit (<i>Normal FECFRAME</i>) bzw.&nbsp; $16200$&nbsp; Bit (<i>Short FECFRAME</i>).
 
*Kombiniert mit&nbsp; [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation#Weitere_Signalraumkonstellationen| Modulationsverfahren hoher Ordnung]]&nbsp; (8PSK, 16&ndash;ASK/PSK, ...&nbsp;) zeichnen sich die Codes durch eine große spektrale Effizienz aus.<br>
 
  
  
Die DVB&ndash;Codes gehören zu den&nbsp; <i>Irregular Repeat Accumulate</i>&nbsp; $\rm (IRA)$ Codes, die erstmals im Jahr 2000 in&nbsp; [JKE00]<ref name='JKE00'>Jin, H.; Khandekar, A.; McEliece, R.: ''Irregular Repeat–Accumulate Codes.'' Proc. of the 2nd Int. Symp. on Turbo Codes and Related Topics, Best, France, S. 1–8., Sept. 2000.</ref>&nbsp; vorgestellt wurden.
+
&rArr; &nbsp; The&nbsp; "digital video broadcast"&nbsp; $\rm (DVB)$&nbsp; codes belong to the&nbsp; "irregular repeat accumulate"&nbsp; $\rm (IRA)$&nbsp; codes first presented in 2000 in&nbsp; [JKE00]<ref name='JKE00'>Jin, H.; Khandekar, A.; McEliece, R.:&nbsp; Irregular Repeat-Accumulate Codes.&nbsp; Proc. of the 2nd Int. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sept. 2000.</ref>.&nbsp; The following graph shows the basic encoder structure:
  
[[File:P ID3082 KC T 4 4 S6a v3.png|center|frame|IRA–Coder bei DVB–S2/T2|class=fit]]
+
[[File:EN_KC_T_4_4_S6a_v1.png|right|frame|Irregular Repeat Accumulate coder for DVB-S2/T2.&nbsp; Not taken into account in the graphic are <br>&nbsp;$\star$&nbsp; LDPC codes for the standard&nbsp; "DVB Return Channel Terrestrial"&nbsp; $\rm (RCS)$, <br>&nbsp;$\star$&nbsp; LDPC codes for the WiMax&ndash;standard&nbsp; $\rm (IEEE 802.16)$,&nbsp;  as well as<br>&nbsp;$\star$&nbsp; LDPC codes for&nbsp; "10GBASE&ndash;T&ndash;Ethernet".<br>&nbsp;  These codes have certain similarities with the IRA codes.|class=fit]]
 +
 +
*The green highlighted part
 +
:*with repetition code&nbsp; $\rm (RC)$,
 +
:*interleaver,
 +
:*single parity-check code&nbsp; $\rm (SPC)$,&nbsp; and
 +
:*accumulator
  
Die Grafik zeigt die Grundstruktur des Coders.
+
:corresponds exactly to a serial&ndash;concatenated turbo code &nbsp; &#8658; &nbsp; see&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes#Some_application_areas_for_turbo_codes| $\text{RA encoder}$]].  
*Der grün hinterlegte Teil &ndash; mit Repetition Code&nbsp; $\rm (RC)$, Interleaver, Single Parity&ndash;Code&nbsp; $\rm  (SPC)$&nbsp; sowie Akkumulator &ndash; entspricht exakt einem seriell&ndash;verketteten Turbocode &nbsp; &#8658; &nbsp; siehe&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Turbocodes#Einige_Anwendungsgebiete_f.C3.BCr_Turbocodes| RA&ndash;Coder]].
 
*Die Beschreibung des IRA&ndash;Codes basiert aber allein auf der Prüfmatrix&nbsp; $\mathbf{H}$, die sich durch den&nbsp; <i>irregulären Repetition Code</i>&nbsp; in eine für die Decodierung günstige Form bringen lässt. 
 
*Als äußerer Code wird zudem ein hochratiger BCH&ndash;Code (von $\rm B$ose&ndash;$\rm C$haudhuri&ndash;$\rm H$ocquenghem) verwendet, der den&nbsp; <i>Error Floor</i>&nbsp; herabsetzen soll.<br>
 
  
 +
*The description of the&nbsp; "irregular repeat accumulate code"&nbsp; is based solely on the parity-check matrix&nbsp; $\mathbf{H}$,&nbsp; which can be transformed into a form favorable for decoding by the&nbsp; "irregular repetition code".
 +
 
 +
*A high-rate&nbsp; &raquo;'''BCH code'''&laquo;&nbsp; $($from&nbsp; $\rm B$ose&ndash;$\rm C$haudhuri&ndash;$\rm H$ocquenghem$)$&nbsp; is often used as an outer encoder to lower the&nbsp; "error floor".
  
  
In der Grafik am Seitenanfang nicht eingetragen sind
 
*die LDPC&ndash;Codes für den Standard&nbsp; <i>DVB Return Channel Terrestrial</i> (RCS),
 
*die LDPC&ndash;Codes für den WiMax&ndash;Standard&nbsp; (IEEE 802.16), sowie
 
*die LDPC&ndash;Codes für das&nbsp; 10GBASE&ndash;T&ndash;Ethernet, 
 
  
  
die gewisse Ähnlichkeiten mit den IRA&ndash;Codes aufweisen.<br>
 
  
== Aufgaben zum Kapitel ==
+
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:4.11 Analyse von Prüfmatrizen|Aufgabe 4.11: Analyse von Prüfmatrizen]]
+
[[Aufgaben:Exercise_4.11:_Analysis_of_Parity-check_Matrices|Exercise 4.11: Analysis of Parity-check Matrices]]
  
[[Aufgaben:4.11Z_Coderate_aus_der_Pr%C3%BCfmatrix|Zusatzaufgabe 4.11Z: Coderate aus der Prüfmatrix]]
+
[[Aufgaben:Exercise_4.11Z:_Code_Rate_from_the_Parity-check_Matrix|Exercise 4.11Z: Code Rate from the Parity-check Matrix]]
  
[[Aufgaben:Aufgabe_4.12:_Regulärer_und_irregulärer_Tanner–Graph|Aufgabe 4.12: Regulärer/irregulärer Tanner–Graph]]
+
[[Aufgaben:Exercise_4.12:_Regular_and_Irregular_Tanner_Graph|Exercise 4.12: Regular and Irregular Tanner Graph]]
  
[[Aufgaben:4.13 Decodierung von LDPC–Codes|Aufgabe 4.13: Decodierung von LDPC–Codes]]
+
[[Aufgaben:Exercise_4.13:_Decoding_LDPC_Codes|Exercise 4.13: Decoding LDPC Codes]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:10, 20 April 2023



Some characteristics of LDPC codes


The  "Low–density Parity–check Codes"  $($in short:  »LDPC codes«$)$  were invented as early as the early 1960s and date back to the dissertation  [Gal63][1]  by  $\text{Robert G. Gallager}$.

However,  the idea came several decades too early due to the processor technology of the time.  Only three years after Berrou's invention of the turbo codes in 1993,  however,  $\text{David J. C. MacKay}$  and  $\text{Radford M. Neal}$  recognized the huge potential of the LDPC codes if they were decoded iteratively symbol by symbol just like the turbo codes.  They virtually reinvented the LDPC codes.

As can already be seen from the name component  "parity–check"  that these codes are linear block codes according to the explanations in the  "first main chapter" .  Therefore,  the same applies here:

  • The code word results from the information word  $\underline{u}$  $($represented with  $k$  binary symbols$)$  and the  $\text{generator matrix}$  $\mathbf{G}$  of dimension  $k × n$  to  $\underline{x} = \underline{u} \cdot \mathbf{G}$  ⇒   code word length  $n$.
  • The parity-check equations result from the identity   $\underline{x} \cdot \mathbf{H}^{\rm T} ≡ 0$,   where  $\mathbf{H}$  denotes the parity-check matrix.  This consists of  $m$  rows and  $n$  columns.  While in the first chapter basically  $m = n -k$  was valid,  for the LPDC codes we only require  $m ≥ n -k$.
  • A serious difference between an LDPC code and a conventional block code as described in the first main chapter is that the parity-check matrix  $\mathbf{H}$  is here sparsely populated with  "ones"   ⇒   "low-density".


Parity-check matrices of a Hamming code and a LDPC code

$\text{Example 1:}$  The graph shows parity-check matrices  $\mathbf{H}$  for

  • the Hamming code with code length  $n = 15$  and with  $m = 4$  parity-check equations   ⇒   $k = 11$  information bits,
  • the LDPC code from  [Liv15][2]  of length  $n = 12$  and with  $m = 9$  parity-check equations   ⇒   $k ≥ 3$  information bits.

Remarks:

  1. In the left graph,  the proportion of  "ones"  is  $32/60 \approx 53.3\%$. 
  2. In the right graph the share of  "ones"  is lower with  $36/108 = 33.3\%$.
  3. For LDPC codes  $($relevant for practice   ⇒   with long length$)$,  the share of  "ones"  is even significantly lower.


We now analyze the two parity-check matrices using the rate and Hamming weight:

  • The rate of the Hamming code under consideration  $($left graph$)$  is  $R = k/n = 11/15 \approx 0.733$.  The Hamming weight of each of the four rows is  $w_{\rm R}= 8$,  while the Hamming weights  $w_{\rm C}(i)$  of the columns vary between  $1$  and  $4$.  For the columns index variable here:   $1 ≤ i ≤ 15$.
  • In the considered LDPC code there are four  "ones"  in all rows   ⇒   $w_{\rm R} = 4$  and three  "ones"  in all columns   ⇒   $w_{\rm C} = 3$.  The code label  $(w_{\rm R}, \ w_{\rm C})$  of LDPC code uses exactly these parameters.  Note the different nomenclature to the  "$(n, \ k, \ m)$  Hamming code".
  • This is called a  »regular LDPC code«,  since all row weights  $w_{\rm R}(j)$  for  $1 ≤ j ≤ m$  are constant equal  $w_{\rm R}$ and also all column weights  $($with indices  $1 ≤ i ≤ n)$  are equal:   $w_{\rm C}(i) = w_{\rm C} = {\rm const.}$  If this condition is not met,  there is an  "irregular LDPC code".


$\text{Feature of LDPC codes}$ 

  • For the code rate,  one can generally  $($if  $k$  is not known$)$  specify only a bound:  
$$R ≥ 1 - w_{\rm C}/w_{\rm R}.$$
  • The equal sign holds if all rows of  $\mathbf{H}$  are linearly independent   ⇒   $m = n \, – k$.  Then the conventional equation is obtained:
$$R = 1 - w_{\rm C}/w_{\rm R} = 1 - m/n = k/n.$$
  • In contrast,  for the code rate of an irregular LDPC code and also for the  $(15, 11, 4)$  Hamming code sketched on the left:
$$R \ge 1 - \frac{ {\rm E}[w_{\rm C}]}{ {\rm E}[w_{\rm R}]} \hspace{0.5cm}{\rm with}\hspace{0.5cm} {\rm E}[w_{\rm C}] =\frac{1}{n} \cdot \sum_{i = 1}^{n}w_{\rm C}(i) \hspace{0.5cm}{\rm and}\hspace{0.5cm} {\rm E}[w_{\rm R}] =\frac{1}{m} \cdot \sum_{j = 1}^{ m}w_{\rm R}(j) \hspace{0.05cm}.$$
  • In Hamming codes  the  $m = n - k$  parity-check equations are linearly independent,  the  "$≥$" sign can be replaced by the  "$=$" sign, which simultaneously means:
$$R = k/n.$$


For more information on this topic,  see  "Exercise 4.11"  and  "Exercise 4.11Z".

Two-part LDPC graph representation - Tanner graph


All essential features of a LDPC ode are contained in the parity-check matrix  $\mathbf{H} = (h_{j,\hspace{0.05cm}i})$  and can be represented by a so-called  "Tanner graph".  It is a  "bipartite graph representation".  Before we examine and analyze exemplary Tanner graphs more exactly,  first still some suitable description variables must be defined:

  • The  $n$  columns of the parity-check matrix  $\mathbf{H}$  each represent one bit of a code word.  Since each code word bit can be both an information bit and a parity bit,  the neutral name   »variable node «  $\rm (VN)$  has become accepted for this.  The  $i$th  code word bit is called  $V_i$  and the set of all  variable nodes is  $\{V_1, \text{...}\hspace{0.05cm} , \ V_i, \ \text{...}\hspace{0.05cm} , \ V_n\}$.
  • The  $m$  rows of  $\mathbf{H}$  each describe a parity-check equation.  We refer to such a parity-check equation in the following as   »check node«  $\rm (CN)$.  The set of all  check nodes is  $\{C_1, \ \text{...}\hspace{0.05cm} , \ C_j, \ \text{...}\hspace{0.05cm} , \ C_m\}$,  where  $C_j$  denotes the parity-check equation of the  $j$th  row.
  • In the Tanner graph, the  $n$  variable nodes  $V_i$  are represented as circles and the  $m$  check nodes  $C_j$  as squares.  If the  $\mathbf{H}$  matrix element in row  $j$  and column  $i$  is $h_{j,\hspace{0.05cm}i} = 1$,  there is an edge between the variable node  $V_i$  and the check node  $C_j$.

Example of a Tanner graph

$\text{Example 2:}$  To clarify the above terms,  an exemplary Tanner graph is given on the right with

  • the variable nodes  $V_1$  to  $V_4$,  and
  • the check nodes  $C_1$  to  $C_3$.

However,  the associated code has no practical meaning.

One can see from the graph:

  1. The code length is  $n = 4$  and there are  $m = 3$  parity-check equations. 
  2. Thus the parity-check matrix  $\mathbf{H}$  has dimension  $3×4$.
  3. There are six edges in total.  Thus six of the twelve elements  $h_{j,\hspace{0.05cm}i}$  of matrix  $\mathbf{H}$  are  "ones".
  4. At each check node two lines arrive   ⇒   the Hamming weights of all rows are equal:   $w_{\rm R}(j) = 2 = w_{\rm R}$.
  5. From the nodes  $V_1$  and  $V_4$  there is only one transition to a check node each,  from  $V_2$  and  $V_3$,  however,  there are two.
  6. For this reason,  it is an  "irregular code".

Accordingly,  the parity-check matrix is:

\[{ \boldsymbol{\rm H} } = \begin{pmatrix} 1 &1 &0 &0\\ 0 &1 &1 &0\\ 0 &0 &1 &1 \end{pmatrix}\hspace{0.05cm}.\]


$\text{Example 3:}$  Now a more practical example follows.  In  "Exercise 4.11"  two parity-check matrices were analyzed:

Tanner graph of a regular and an irregular code

⇒   The encoder corresponding to the matrix  $\mathbf{H}_1$  is systematic.

  1. The code parameters are  $n = 8, \ k = 4,\ m = 4$  ⇒   rate  $R=1/2$.
  2. The code is irregular because the Hamming weights are not the same for all columns.
  3. In the graph,  this  "irregular  $\mathbf{H}$ matrix"  is given above.


⇒   Bottom indicated is the "regular  $\mathbf{H}$ matrix" corresponding to the matrix  $\mathbf{H}_3$  from Exercise 4.11.

  1. The rows are linear combinations of the upper matrix  $\mathbf{H}_1$.
  2. For this non-systematic encoder holds  $w_{\rm C} = 2, \ w_{\rm R} = 4$.
  3. Thus for the rate:   $R \ge 1 - w_{\rm C}/w_{\rm R} = 1/2$.


On the right you see the corresponding Tanner graphs:

  • The left Tanner graph refers to the upper  $($irregular$)$  matrix.  The eight variable nodes  $V_i$  are connected to the four check nodes  $C_j$  if the element in row  $j$  and column  $i$  is a  "one" $\hspace{0.15cm} ⇒ \hspace{0.15cm} h_{j,\hspace{0.05cm}i}=1$.
  • This graph is not particularly well suited for  $\text{iterative symbol-wise decoding}$.  The variable nodes  $V_5, \ \text{...}\hspace{0.05cm} , \ V_8$  are each associated with only one check node,  which provides no information for decoding.
  • In the right Tanner graph for the regular code,  you can see that here from each variable node  $V_i$  two edges come off and from each check node  $C_j$  their four.  This allows information to be gained during decoding in each iteration loop.
  • It can also be seen that here,  in the transition from the irregular to the equivalent regular code,  the proportion of  "ones"  increases,  in the example from  $37.5\%$  to $50\%$.  However,  this statement cannot be generalized.


Iterative decoding of LDPC codes


As an example of iterative LDPC decoding,  the so-called  "message passing algorithm"  is now described.  We illustrate this using the right-hand Tanner graph in  $\text{Example 3}$  in the previous section and thus for the regular parity-check matrix given there.

$\text{Principle:}$  In the  »message passing algorithm«  there is an alternating  $($or iterative$)$  exchange of information between the variable nodes  $V_1, \ \text{...}\hspace{0.05cm} , \ V_n$  and the check nodes  $C_1 , \ \text{...}\hspace{0.05cm} , \ C_m$.


Iterative decoding of LDPC codes

For the regular LDPC code under consideration:

  1. There are  $n = 8$  variable nodes and  $m = 4$  check nodes.
  2. From each variable node go  $d_{\rm V} = 2$  connecting lines to a check node and each check node is connected to  $d_{\rm C} = 4$  variable nodes.
  3. The variable node degree  $d_{\rm V}$  is equal to the Hamming weight of each column  $(w_{\rm C})$  and for the check node degree holds:  $d_{\rm C} = w_{\rm R}$  (Hamming weight of each row).
  4. In the following description we use the terms  "neighbors of a variable node"   ⇒   $N(V_i)$  and  "neighbors of a check node"   ⇒   $N(C_j)$.
  5. We restrict ourselves here to implicit definitions:
$$N(V_1) = \{ C_1, C_2\}\hspace{0.05cm},$$
$$ N(V_2) = \{ C_3, C_4\},$$
$$\text{........}$$
$$N(V_8) = \{ C_1, C_4\},$$
$$N(C_1) = \{ V_1, V_4, V_5, V_8\},$$
$$\text{........}$$
$$N(C_4) = \{ V_2, V_3, V_6, V_8\}.$$
Information exchange between variable and check nodes

$\text{Example 4:}$The sketch from  [Liv15][2]  shows the information exchange

  • between the yariable node  $V_i$  and the check node  $C_j$,


The exchange of information happens in two directions:

  • $L(V_i → C_j)$:  Extrinsic information from  $V_i$  point of view,   a-priori information from  $C_j$  point of view.
  • $L(C_j → V_i)$:  Extrinsic information from  $C_j$  point of view,  a-priori information from  $V_i$  point of view.


The description of the decoding algorithm continues:

(1)  Initialization:  At the beginning of decoding,  the variable nodes receive no a-priori information from the check nodes,  and it applies for  $1 ≤ i ≤ n \text{:}$  

$$L(V_i → C_j) = L_{\rm K}(V_i).$$

As can be seen from the graph at the top of the page,  these channel log likelihood values  $L_{\rm K}(V_i)$  result from the received values  $y_i$.

(2)  Check Node Decoder (CND):  Each node  $C_j$  represents one parity-check equation.  Thus  $C_1$  represents the equation  $V_1 + V_4 + V_5 + V_8 = 0$.  One can see the connection to extrinsic information in the symbol-wise decoding of the single parity–check code.

In analogy to the section  "Calculation of extrinsic log likelihood ratios"  and to  "Exercise 4.4"  thus applies to the extrinsic log likelihood value of  $C_j$  and at the same time to the a-priori information concerning  $V_i$:

\[L(C_j \rightarrow V_i) = 2 \cdot {\rm tanh}^{-1}\left [ \prod\limits_{V \in N(C_j)\hspace{0.05cm},\hspace{0.1cm} V \ne V_i} \hspace{-0.35cm}{\rm tanh}\left [L(V \rightarrow C_j \right ] /2) \right ] \hspace{0.05cm}.\]


(3)  Variable Node Decoder (VND):  In contrast to the check node decoder,  the variable node decoder is related to the decoding of a repetition code because all check nodes connected to  $V_i$  correspond to the same bit  $C_j$  ⇒   this bit is quasi repeated  $d_{\rm V}$  times.

In analogy to to the section  "Calculation of extrinsic log likelihood ratios"  applies to the extrinsic log likelihood value of  $V_i$  and at same time to the a-priori information concerning  $C_j$:

Relationship between LDPC decoding and serial turbo decoding
\[L(V_i \rightarrow C_j) = L_{\rm K}(V_i) + \hspace{-0.55cm} \sum\limits_{C \hspace{0.05cm}\in\hspace{0.05cm} N(V_i)\hspace{0.05cm},\hspace{0.1cm} C \hspace{0.05cm}\ne\hspace{0.05cm} C_j} \hspace{-0.55cm}L(C \rightarrow V_i) \hspace{0.05cm}.\]

The chart on the right describes the decoding algorithm for LDPC codes. 

  • To establish a complete analogy between LDPC and turbo decoding,  an  "interleaver"  as well as a "de-interleaver"  are also drawn here between  $\rm VND$  and  $\rm CND$.
  • Since these are not real system components,  but only analogies,  we have enclosed these terms in quotation marks.


Performance of regular LDPC codes


We now consider as in  [Str14][3]  five regular LDPC codes.  The graph shows the bit error rate  $\rm (BER)$  depending on the AWGN parameter  $10 \cdot {\rm lg} \, E_{\rm B}/N_0$.  The curve for uncoded transmission is also plotted for comparison.

Bit error rate of LDPC codes

These LDPC codes exhibit the following properties:

  • The parity-check matrices  $\mathbf{H}$  each have  $n$  columns and  $m = n/2$  linearly independent rows.  In each row there are  $w_{\rm R} = 6$  "ones"  and in each column  $w_{\rm C} = 3$  "ones".
  • The share of  "ones"  is  $w_{\rm R}/n = w_{\rm C}/m$,  so for large code word length  $n$  the classification "low–density" is justified.  For the red curve  $(n = 2^{10})$  the share of  "ones"  is  $0.6\%$.
  • The rate of all codes is  $R = 1 - w_{\rm C}/w_{\rm R} = 1/2$.  However,  because of the linear independence of the matrix rows,  $R = k/n$  with the information word length  $k = n - m = n/2$  also holds.

From the graph you can see:

  • The bit error rate is smaller the longer the code:
  • For  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 2 \ \rm dB$  and  $n = 2^8 = 256$  we get  ${\rm BER} \approx 10^{-2}$.
  • For  $n = 2^{12} = 4096$  on the other hand,  only  ${\rm BER} \approx 2 \cdot 10^{-7}$.
  • With  $n = 2^{15} = 32768$  $($violet curve$)$  one needs   $10 \cdot {\rm lg} \, E_{\rm B}/N_0 \approx 1.35 \ \rm dB$  for  ${\rm BER} = 10^{-5}$.
  • The distance from the Shannon bound  $(0.18 \ \rm dB$  for  $R = 1/2$  and BPSK$)$  is approximately  $1.2 \ \rm dB$.


Waterfall region & error floor



The curves for  $n = 2^8$  to  $n = 2^{10}$  also point to an effect we already noticed with the  $\text{turbo codes}$  $($see qualitative graph on the left$)$:

  1. First,  the BER curve drops steeply   ⇒   "waterfall region".
  2. That is followed by a kink and a course with a significantly lower slope   ⇒   "error floor".
  3. The graphic illustrates the effect,  which of course does not start abruptly  $($transition not drawn$)$.


An  $($LDPC$)$  code is considered good whenever

  • the  $\rm BER$  curve drops steeply near the Shannon bound,
  • the error floor is at very low  $\rm BER$  values  $($for causes see next section and  $\text{Example 5)}$,
  • the number of required iterations is manageable,  and
  • these properties are not reached only at no more practicable block lengths.


Performance of irregular LDPC codes


LDPC codes compared
to the Shannon bound

This chapter has dealt mainly with regular LDPC codes, including in the  $\rm BER$  diagram in the last section.  The ignorance of irregular LDPC codes is only due to the brevity of this chapter,  not their performance.

On the contrary:

  • Irregular LDPC codes are among the best channel codes ever.
  • The yellow cross is practically on the information-theoretical limit curve for binary input signals  $($green   $\rm BPSK$  curve$)$.
  • The code word length of this irregular rate  $1/2$  code from  [CFRU01][4] is  $n = 2 \cdot 10^6$.
  • From this it is already obvious that this code was not intended for practical use,  but was even tuned for a record attempt:


Note:

  1. The LDPC code construction always starts from the parity-check matrix  $\mathbf{H}$. 
  2. For the just mentioned code this has the dimension  $1 \cdot 10^6 × 2 \cdot 10^6$,  thus contains  $2 \cdot 10^{12}$  matrix elements.


$\text{Conclusion:}$  Filling the matrix randomly with  $($few$)$  "ones"   ⇒   "low–density"  is called  »unstructured code design«.

This can lead to long codes with good performance,  but sometimes also to the following problems:

  • The complexity of the encoder can increase,  because despite modification of the parity-check matrix  $\mathbf{H}$  it must be ensured that the generator matrix  $\mathbf{G}$  is systematic.
  • It requires a complex hardware–realization of the iterative decoder.
  • It comes to an  "error floor"  by single  "ones"  in a column  $($or row$)$  as well as by short loops   ⇒   see following example.


$\text{Example 5:}$  The left part of the graph shows the Tanner graph for a regular LDPC code with the parity-check matrix  $\mathbf{H}_1$.

Definition of a "girth"
  • Drawn in green is an example of the  "minimum girth".
  • This parameter indicates the minimum number of edges one passes through before ending up at a check node  $C_j$  again $($or from  $V_i$  to  $V_i)$.
  • In the left example,  the minimum edge length  $6$,  for example,  results in the path 
$$C_1 → V_1 → C_3 → V_5 → C_2 → V_2 → C_1.$$

⇒   Swapping only two  "ones"  in the parity-check matrix   ⇒   matrix  $\mathbf{H}_2$,  the LDPC code becomes irregular:

  • The minimum loop length is now  $4$,  from 
$$C_1 → V_4 → C_4 → V_6 → C_1.$$
  • A small  "girth"  leads to a pronounced  "error floor"  in the BER process.


Some application areas for LDPC codes


In the adjacent diagram,  two communication standards based on structured  $($regular$)$  LDPC codes are entered in comparison to the AWGN channel capacity.

Some standardized LDPC codes compared to the Shannon bound

It should be noted that the bit error rate  ${\rm BER}=10^{-5}$  is the basis for the plotted standardized codes,  while the capacity curves  $($according to information theory$)$  are for  "zero"  error probability.

⇒   Red crosses indicate the   »LDPC codes according to CCSDS«   developed for distant space missions:

  • This class provides codes of rate  $1/3$,  $1/2$,  $2/3$  and  $4/5$.
  • All points are located  $\approx 1 \ \rm dB$  to the right of the capacity curve for binary input  $($green curve "BPSK"$)$.


⇒   The blue rectangles mark the   »LDPC codes for DVB–T2/S2«.  

The abbreviations stand for   "Digital Video Broadcasting – Terrestrial"  resp.  "Digital Video Broadcasting – Satellite",  and the  "$2$"  marking makes it clear that each is the second generation  $($from 2005 resp. 2009$)$.

  • The standard is defined by  $22$  test matrices providing rates from about  $0.2$  up to  $19/20$.
  • Each eleven variants apply to the code length  $n= 64800$  bit  $($"Normal FECFRAME"$)$  and  $16200$  bit  $($"Short FECFRAME"$),$  respectively.


⇒   The  "digital video broadcast"  $\rm (DVB)$  codes belong to the  "irregular repeat accumulate"  $\rm (IRA)$  codes first presented in 2000 in  [JKE00][5].  The following graph shows the basic encoder structure:

Irregular Repeat Accumulate coder for DVB-S2/T2.  Not taken into account in the graphic are
 $\star$  LDPC codes for the standard  "DVB Return Channel Terrestrial"  $\rm (RCS)$,
 $\star$  LDPC codes for the WiMax–standard  $\rm (IEEE 802.16)$,  as well as
 $\star$  LDPC codes for  "10GBASE–T–Ethernet".
  These codes have certain similarities with the IRA codes.
  • The green highlighted part
  • with repetition code  $\rm (RC)$,
  • interleaver,
  • single parity-check code  $\rm (SPC)$,  and
  • accumulator
corresponds exactly to a serial–concatenated turbo code   ⇒   see  $\text{RA encoder}$.
  • The description of the  "irregular repeat accumulate code"  is based solely on the parity-check matrix  $\mathbf{H}$,  which can be transformed into a form favorable for decoding by the  "irregular repetition code".
  • A high-rate  »BCH code«  $($from  $\rm B$ose–$\rm C$haudhuri–$\rm H$ocquenghem$)$  is often used as an outer encoder to lower the  "error floor".



Exercises for the chapter


Exercise 4.11: Analysis of Parity-check Matrices

Exercise 4.11Z: Code Rate from the Parity-check Matrix

Exercise 4.12: Regular and Irregular Tanner Graph

Exercise 4.13: Decoding LDPC Codes

References

  1. Gallager, R. G.:  Low-density parity-check codes.  MIT Press, Cambridge, MA, 1963.
  2. 2.0 2.1 Liva, G.:  Channels Codes for Iterative Decoding.  Lecture notes, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.
  3. Strutz, T.:  Low-density parity-check codes - An introduction.  Lecture material. Hochschule für Telekommunikation, Leipzig, 2014. PDF document.
  4. Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.:  On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit.  - In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58-60.
  5. Jin, H.; Khandekar, A.; McEliece, R.:  Irregular Repeat-Accumulate Codes.  Proc. of the 2nd Int. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sept. 2000.