Difference between revisions of "Linear and Time Invariant Systems/Properties of Balanced Copper Pairs"

From LNTwww
Line 33: Line 33:
 
To reduce crosstalk on neighboring line pairs due to inductive and capacitive couplings and to increase the packing density, two pairs of twisted pairs are twisted into a so-called  "star quad" .  The diagram below shows such a star quad and a bundled cable.
 
To reduce crosstalk on neighboring line pairs due to inductive and capacitive couplings and to increase the packing density, two pairs of twisted pairs are twisted into a so-called  "star quad" .  The diagram below shows such a star quad and a bundled cable.
 
*Here, five such quads each are combined to form a basic bundle, and five basic bundles each are combined to form a main bundle.  
 
*Here, five such quads each are combined to form a basic bundle, and five basic bundles each are combined to form a main bundle.  
*This thus contains  $50$  twin pairs with PE insulation   (PE:   polyethylene). }}
+
*This thus contains  $50$  twin pairs with PE insulation   (PE:  polyethylene). }}
  
  
Line 72: Line 72:
 
As a criterion of this conversion we use that the squared deviation between both functions is minimal in the range from  $f = 0$   to  $f = B$ :
 
As a criterion of this conversion we use that the squared deviation between both functions is minimal in the range from  $f = 0$   to  $f = B$ :
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
Es ist offensichtlich, dass  $α_0 = k_1$  gelten wird. Die Parameter  $α_1$  und  $α_2$  sind von der gewünschten Bandbreite $B$ abhängig. Sie lauten entsprechend der [[Aufgaben:Aufgabe_4.6:_k-Parameter_und_Alpha-Parameter|Exercise 4.6]]:
+
It is obvious that  $α_0 = k_1$  will hold. The parameters  $α_1$  and  $α_2$  depend on the desired bandwidth $B$. According to [[Aufgaben:Exercise_4.6:_K-Parameters_and_Alpha-Parameters|Exercise 4.6]], they are:
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
*Für  $k_3 = 1$  (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig die $\alpha$–Parameter zu
+
*For  $k_3 = 1$  (frequency-proportional attenuation function per unit length), the $\alpha$–parameters logically result in
 
:$$\alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$
 
:$$\alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$
*während man für  $k_3 = 0.5$  die folgenden Koeffizienten erhält:
+
*while for  $k_3 = 0.5$  the following coefficients are obtained:
 
:$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0}}\hspace{0.05cm}.$$
 
:$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0}}\hspace{0.05cm}.$$
  
:In diesem Fall steigt das Dämpfungsmaß  $α(f)$  mit der Wurzel aus der Frequenz an. Es ergibt sich also der gleiche Verlauf wie bei einem Koaxialkabel, bei dem ja bekanntlich der Skineffekt dominiert.
+
:In this case, the attenuation function per unit length  $α(f)$  increases with the square root of the frequency. This results in the same curve as for a coaxial cable, where the well-known skin effect dominates.
  
  
Nachfolgend wird an drei Beispielen verdeutlicht, wie die zugrundeliegende Bandbreite  $B$  die Ergebnisse dieser Umrechnung beeinflussen.
+
In the following, three examples will illustrate how the underlying bandwidth  $B$  influences the results of this conversion.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$   
+
$\text{Example 2:}$   
Bei den folgenden Grafiken gehen wir von der Leitungslänge  $l = 1 \ \rm km$  und vom Durchmesser  $d = 0.4 \ \rm  mm$  aus, so dass gilt:
+
In the following graphs we assume the line length  $l = 1 \ \rm km$  and the diameter  $d = 0.4 \ \rm  mm$ , so that the following applies:
:[[File:EN_LZI_T_4_3_S3.png|right|frame| Approximation der  $k$  durch  $\alpha$–Parameter]]
+
:[[File:EN_LZI_T_4_3_S3.png|right|frame| Approximation of  $k$–parameters  by  $\alpha$–parameters]]
 
   
 
   
 
:$$k_1 = 5.1 \ \rm  dB/km, \ k_2 = 14.3 \ \rm  dB/km, \ k_3 = \ 0.59.$$
 
:$$k_1 = 5.1 \ \rm  dB/km, \ k_2 = 14.3 \ \rm  dB/km, \ k_3 = \ 0.59.$$
Für diesen Fall zeigt die folgende Grafik
+
For this case the following graph shows
*die mit  $α_0, α_1$  und  $α_2$  approximierte Dämpfung (blaue Kurve)  
+
*the attenuation approximated with  $α_0, α_1$  and  $α_2$  (blue curve)
*im Vergleich zum tatsächlichen Verlauf gemäß  $k_1, k_2, k_3$  (rote Kurve).  
+
*compared to the actual curve according to  $k_1, k_2, k_3$  (red curve).
  
  
Die drei Diagramme gelten für die Bandbreiten  $B = 10 \ \rm  MHz$,  $B = 20  \ \rm  MHz$  und  $B = \ \rm  30 \ MHz$.  
+
The three diagrams are valid for the bandwidths  $B = 10 \ \rm  MHz$,  $B = 20  \ \rm  MHz$  and  $B = \ \rm  30 \ MHz$.  
*Die ermittelten Koeffizienten  $α_1$  und  $α_2$  sind angegeben.  
+
*The determined coefficients  $α_1$  and  $α_2$  are indicated.
*Stets gilt  $α_0 = k_1 = 5.1 \ \rm  dB/km$.
+
* $α_0 = k_1 = 5.1 \ \rm  dB/km$ is always valid..
  
  
Man erkennt aus diesen Darstellungen:  
+
One recognizes from these representations:  
*Selbst beim größten Approximationsbereich  $(B = 30 \ \rm MHz)$  nähert die blaue Kurve  $($mit  $α_0,  α_1,  α_2)$  den gemessenen Verlauf  $($rote Kurve, beschrieben durch  $k_1, \ k_2, \ k_3)$  sehr gut an.  
+
*Even with the largest approximation range  $(B = 30 \ \rm MHz)$ , the blue curve  $($with  $α_0,  α_1,  α_2)$  approximates the measured curve  $($red curve, described by  $k_1, \ k_2, \ k_3)$  very well.  
*Bei kleinerer Bandbreite  $(B = 20 \ \rm MHz$   bzw.  $B = 10 \ \rm MHz)$  ist die Approximation im Bereich  $0≤ f ≤ B$  noch besser, doch kommt es dann für  $f > B$  zu Verfälschungen.  
+
*For smaller bandwidth  $(B = 20 \ \rm MHz$   or  $B = 10 \ \rm MHz)$  the approximation in the range  $0≤ f ≤ B$  is even better, but then distortions occur for  $f > B$ .
*Der Dämpfungswert  $a_{\rm K}(f = 30 \ \rm MHz) ≈ 112.2 \ \rm dB$  setzt sich bei der betrachteten Zweidrahtleitung  folgendermaßen zusammen:  $4.5\%$  geht auf den Koeffizienten  $α_0$  (Ohmsche Verluste)  zurück,  $23.5\%$  auf den  $f$–proportioanlen Anteil  $α_1$  und  $72\%$  auf den Koeffizienten  $α_2$.  
+
*The attenuation value  $a_{\rm K}(f = 30 \ \rm MHz) ≈ 112.2 \ \rm dB$  is composed as follows for the considered two-wire cable:  $4.5\%$  is due to the coefficient  $α_0$  (ohmic losses) ,  $23.5\%$  to the  $f$–proportional component  $α_1$  and  $72\%$  to the coefficient  $α_2$.  
*Das Normalkoaxialkabel  $\text{2.6/9.5 mm}$  weist im Vergleich dazu erst bei einer Länge von  $l = 8.7 \ \rm km$  eine vergleichbare Dämpfung  $(≈ 112 \ \rm dB)$  auf, wobei der Großteil der Dämpfung  $(98.9\%)$ vom Skineffekt  $(α_2)$  herrührt.}}
+
*In comparison, the standard  $\text{2.6/9.5 mm}$  coaxial cable exhibits comparable attenuation  $(≈ 112 \ \rm dB)$  only at a length of  $l = 8.7 \ \rm km$  , with most of the attenuation  $(98.9\%)$ coming from the skin effect  $(α_2)$ .}}
  
  
In der Gegenrichtung  $(α_1, \ α_2  ⇒  k_2, \ k_3)$  lautet die Umrechnungsvorschrift für den Exponenten:
+
In the opposite direction  $(α_1, \ α_2  ⇒  k_2, \ k_3)$  the conversion rule for the exponent is:
  
:$$k_3 = \frac{H + 0.5} {H +1}, \hspace{0.8cm}\text{Hilfsgröße:  }H = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$
+
:$$k_3 = \frac{H + 0.5} {H +1}, \hspace{0.8cm}\text{Auxiliary:  }H = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$
  
Mit diesem Ergebnis lässt sich  $k_2$  mit jeder der beiden oben angegebenen Gleichungen berechnen.  
+
With this result,  $k_2$  can be calculated using either of the two equations given above.  
  
  
==Impulsantwort einer Zweidrahtleitung==
+
==Impulse response of a two-wire line==
 
<br>
 
<br>
Mit dieser Koeffizientenumrechnung &nbsp;$(k_1, \ k_2, \ k_3) \ \ ⇒ \ \ (α_0, \ α_1, \ α_2)$&nbsp; kann nun für den gesamten Frequenzgang einer Zweidrahtleitung geschrieben werden:
+
With this coefficient conversion &nbsp;$(k_1, \ k_2, \ k_3) \ \ ⇒ \ \ (α_0, \ α_1, \ α_2)$&nbsp;we can now write for the total frequency response of a two-wire line:
 
:$$H_{\rm K}(f)  = H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$
 
:$$H_{\rm K}(f)  = H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$
  
Hierbei sind folgende Abkürzungen verwendet:
+
Here, the following abbreviations are used:
 
:$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot {R}/{2} \hspace{0.05cm},
 
:$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l}= {\rm  e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np)  }\cdot l \cdot {R}/{2} \hspace{0.05cm},
 
\\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}\tau_{\rm P}}  \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = {\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l }/({2 \pi}) \hspace{0.05cm},
 
\\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.05cm}\tau_{\rm P}}  \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = {\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l }/({2 \pi}) \hspace{0.05cm},
Line 125: Line 125:
 
\\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm  e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm} \end{align*}$$
 
\\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm  e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad)  }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm} \end{align*}$$
  
Auf die Bedeutung der hier implizit definierten Größen wird etwas später eingegangen.  
+
The meaning of the quantities implicitly defined here will be discussed a little later.
  
Wir gehen hier zunächst ganz formal vor. Nach dem &nbsp;[[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungssatz]]&nbsp; gilt für die resultierende Impulsantwort als die &nbsp;[[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|Fourierrücktransformierte]]&nbsp; von &nbsp;$H_{\rm K}(f)$:
+
We proceed quite formally here first. According to the &nbsp;[[Signal_Representation/The_Convolution_Theorem_and_Operation|convolution theorem]],&nbsp;the resulting impulse response is the &nbsp;[[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|Fourier retransform]]&nbsp; of &nbsp;$H_{\rm K}(f)$:
 
:$$h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
 
:$$h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
:$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm usw.}$$
+
:$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm etc.}$$
  
Diese fünf Anteile sollen nun separat betrachtet werden, wobei sich die numerischen Ergebnisse auf
+
These five components are now to be considered separately, with the numerical results referring to
*ein digitales Übertragungssystem mit der Bitrate &nbsp;$R = 30 \ \rm Mbit/s$&nbsp; und
+
*a digital transmission system with bit rate &nbsp;$R = 30 \ \rm Mbit/s$&nbsp; and
*eine Zweidrahtleitung mit den Abmessungen&nbsp; $d = 0.4 \ \rm mm$&nbsp; und&nbsp; $l = 1 \ \rm km$&nbsp;  
+
*a two-wire line with dimensions&nbsp; $d = 0.4 \ \rm mm$&nbsp; and&nbsp; $l = 1 \ \rm km$.&nbsp;  
  
  
beziehen. Damit lauten die&nbsp; $α$–Koeffizienten in Neper&nbsp; (Np):
+
Thus, the&nbsp; $α$–coefficients in Neper&nbsp; (Np) are:
 
:$$\alpha_0  = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1  = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2  = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.$$
 
:$$\alpha_0  = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1  = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2  = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.$$
  
Das Phasenmaß dieser Leitung ist ebenfalls in&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: ''Eigenschaften symmetrischer Ortsanschlusskabel im
+
The phase function per unit length of this line is also given in&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: ''Eigenschaften symmetrischer Ortsanschlusskabel im
 
Frequenzbereich bis 30 MHz.'' Deutsche Telekom AG, Forschungs- und Technologiezentrum
 
Frequenzbereich bis 30 MHz.'' Deutsche Telekom AG, Forschungs- und Technologiezentrum
Darmstadt, 1995.</ref>&nbsp; angegeben:
+
Darmstadt, 1995.</ref>&nbsp;:
 
:$$b_{\rm K}(f)  =  \beta_1 \cdot f +  \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1  = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2  = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 
:$$b_{\rm K}(f)  =  \beta_1 \cdot f +  \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1  = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2  = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
Als Normierungsgröße der Zeit eignet sich die Symboldauer &nbsp;$T = 1/R ≈ 33 \ \rm  ns$.
+
The symbol duration &nbsp;$T = 1/R ≈ 33 \ \rm  ns$ is suitable as a normalization quantity of time.
  
==Interpretation und Manipulation der einzelnen Impulsantworten==
+
==Interpretation and manipulation of the individual impulse responses==
 
<br>
 
<br>
Nun sollen die fünf Impulsantwort–Anteile &nbsp;$h_{α0}(t), \ h_{α1}(t), \ h_{α2}(t), \ h_{β1}(t)$&nbsp; und &nbsp;$h_{β2}(t)$&nbsp; interpretiert werden:
+
Now the five impulse response components &nbsp;$h_{α0}(t), \ h_{α1}(t), \ h_{α2}(t), \ h_{β1}(t)$&nbsp; and &nbsp;$h_{β2}(t)$&nbsp; are interpreted:
  
'''(1)'''&nbsp;&nbsp; Der von den Ohmschen Verlusten herrührende erste Term (frequenzunabhängige Dämpfung) führt zu einer Diracfunktion mit dem Gewicht &nbsp;$K$,&nbsp; sodass die Faltung mit &nbsp;$h_{α0}(t)$&nbsp; durch die Multiplikation mit &nbsp;$K = {\rm e}^{–0.59} ≈ 0.55$&nbsp; ersetzt werden kann:
+
'''(1)'''&nbsp;&nbsp; The first term resulting from the ohmic losses (frequency-independent attenuation) leads to a Dirac function with weight &nbsp;$K$,&nbsp; so that the convolution with &nbsp;$h_{α0}(t)$&nbsp; can be replaced by the multiplication with &nbsp;$K = {\rm e}^{–0.59} ≈ 0.55$&nbsp;:
 
:$$h_{\alpha 0}(t) =  K \cdot \delta(t) \hspace{0.25cm}{\rm mit}\hspace{0.25cm} K = {\rm  e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot  h_{\rm Rest}(t)\hspace{0.05cm}.$$
 
:$$h_{\alpha 0}(t) =  K \cdot \delta(t) \hspace{0.25cm}{\rm mit}\hspace{0.25cm} K = {\rm  e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t)  = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot  h_{\rm Rest}(t)\hspace{0.05cm}.$$
  
'''(2)'''&nbsp;&nbsp;  $H_{α1}(f)$&nbsp; ist eine reelle und gerade Funktion der Frequenz, so dass auch die Fourierrücktransformierte reell und symmetrisch um &nbsp;$t =0$&nbsp; ist:
+
'''(2)'''&nbsp;&nbsp;  $H_{α1}(f)$&nbsp; is a real and even function of frequency, so the Fourier retransform is also real and symmetric at &nbsp;$t =0$&nbsp;:
 
:$$H_{\alpha 1}(f) = {\rm  e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{\alpha 1}(t)= \frac{1}{T} \cdot  \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np  } \hspace{0.05cm}.$$
 
:$$H_{\alpha 1}(f) = {\rm  e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{\alpha 1}(t)= \frac{1}{T} \cdot  \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np  } \hspace{0.05cm}.$$
:Mit den beispielhaften Zahlenwerten &nbsp;$α_1 = 0.1 \ \rm  Np/(km · MHz)$, &nbsp; $l = 1 \ \rm km$, &nbsp; $R = 30 \ \rm MHz$  &nbsp; &rArr; &nbsp; ${\rm a}_1 = 1.5 \ \rm (Np)$&nbsp; ergibt sich für das Maximum dieses Anteils:  
+
:With the exemplary numerical values &nbsp;$α_1 = 0.1 \ \rm  Np/(km · MHz)$, &nbsp; $l = 1 \ \rm km$, &nbsp; $R = 30 \ \rm MHz$  &nbsp; &rArr; &nbsp; ${\rm a}_1 = 1.5 \ \rm (Np)$&nbsp;, we obtain for the maximum of this fraction:
 
:$$h_{α1}(t = 0) = 1/{\rm a}_1 = 2/3 · 1/T.$$
 
:$$h_{α1}(t = 0) = 1/{\rm a}_1 = 2/3 · 1/T.$$
  
'''(3)'''&nbsp;&nbsp;  Wie bei den Koaxialkabelsystemen führt &nbsp;$H_{β1}(f)$&nbsp; zu keiner Signalverzerrung, sondern nur zu einer Zeitverzögerung um die &nbsp;[[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen#Unterschied_zwischen_Phasen-_und_Gruppenlaufzeit|Phasenlaufzeit]]:  
+
'''(3)'''&nbsp;&nbsp;  As for the coaxial cable systems, &nbsp;$H_{β1}(f)$&nbsp; does not lead to any signal distortion, but only to a time delay by the &nbsp;[[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen#Unterschied_zwischen_Phasen-_und_Gruppenlaufzeit|phase delay time]]:  
 
:$$τ_{\rm P} ≈ 5.24 \ \rm &micro;s  \hspace{0.2cm} &rArr; \hspace{0.2cm} τ_{\rm P}/T ≈ 157.$$  
 
:$$τ_{\rm P} ≈ 5.24 \ \rm &micro;s  \hspace{0.2cm} &rArr; \hspace{0.2cm} τ_{\rm P}/T ≈ 157.$$  
  
'''(4)'''&nbsp;&nbsp;  Wenden wir uns noch der gemeinsamen Betrachtung der Anteile &nbsp;$H_{α2}(f)$&nbsp; und &nbsp;$H_{β2}(f)$&nbsp; zu, die im Zeitbereich durch die Teilimpulsantwort &nbsp;$h_2(t)$&nbsp; beschrieben wird:
+
'''(4)'''&nbsp;&nbsp;  Let us turn to the combined consideration of the &nbsp;$H_{α2}(f)$&nbsp; and &nbsp;$H_{β2}(f)$&nbsp; components, which is described in the time domain by the partial impulse response &nbsp;$h_2(t)$&nbsp;:
 
:$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{2}(t) \hspace{0.05cm}.$$
 
:$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad  h_{2}(t) \hspace{0.05cm}.$$
  
'''(5)'''&nbsp;&nbsp;  Um die Ergebnisse des Kapitels &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Eigenschaften von Koaxialkabeln]]&nbsp; anwenden zu können, ersetzen wir &nbsp;$β_2$&nbsp; durch &nbsp;$α_2 · \rm rad/Np$&nbsp; und &nbsp;$b_2$&nbsp; durch &nbsp;${\rm a}_2 · \text{rad/Np}$,&nbsp; so dass &nbsp;${\rm a}_2$&nbsp; und &nbsp;$b_2$&nbsp; den gleichen Zahlenwert besitzen. Beispielhaft ersetzt man hier:
+
'''(5)'''&nbsp;&nbsp;  To apply the results of the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]],&nbsp; we replace &nbsp;$β_2$&nbsp; by &nbsp;$α_2 · \rm rad/Np$&nbsp; and &nbsp;$b_2$&nbsp; by &nbsp;${\rm a}_2 · \text{rad/Np}$,&nbsp; so that &nbsp;${\rm a}_2$&nbsp; and &nbsp;$b_2$&nbsp; have the same numerical value. As an example, we substitute here:
 
:$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow  \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
 
:$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow  \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
:Man reduziert somit die Konstante &nbsp;$β_2 = 2.26 \ \rm rad/(km · \sqrt{MHz})$&nbsp; auf &nbsp;$β_2 = 1.69 \ \rm rad/(km · \sqrt{MHz})$&nbsp;.
+
:One thus reduces the constant &nbsp;$β_2 = 2.26 \ \rm rad/(km · \sqrt{MHz})$&nbsp; to &nbsp;$β_2 = 1.69 \ \rm rad/(km · \sqrt{MHz})$&nbsp;.
  
'''(6)'''&nbsp;&nbsp;  Bevor wir den Leser unnötig zu Überlegungen verleiten, ob diese Näherung tatsächlich zulässig ist oder nicht, geben wir gleich freiwillig zu, dass diese Annahme die Schwachstelle unserer Überlegungen ist. Eine Diskussion dieser Fehlannahme folgt im &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Diskussion_der_gefundenen_N.C3.A4herungsl.C3.B6sung|nächsten Abschnitt]].  
+
'''(6)'''&nbsp;&nbsp;  Before we unnecessarily lead the reader to consider whether this approximation is indeed valid or not, we freely admit right away that this assumption is the weak point of our reasoning. A discussion of this faulty assumption follows in the &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Diskussion_der_gefundenen_N.C3.A4herungsl.C3.B6sung|next secction]].  
  
'''(7)'''&nbsp;&nbsp;  Nachdem nun &nbsp;${\rm a}_2$&nbsp; und &nbsp;$b_2$&nbsp; die gleichen Zahlenwerte aufweisen, kann weiter die im Abschnitt &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Eigenschaften von Koaxialkabeln]]&nbsp; angegebene Gleichung verwendet werden, wobei &nbsp;$\rm a_∗$&nbsp; durch &nbsp;$\rm a_2$&nbsp; zu ersetzen ist:
+
'''(7)'''&nbsp;&nbsp;  Now that &nbsp;${\rm a}_2$&nbsp; and &nbsp;$b_2$&nbsp; have the same numerical values, we can further use the equation given in the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]],&nbsp; substituting &nbsp;$\rm a_∗$&nbsp; for &nbsp;$\rm a_2$&nbsp;:
 
:$$h_{\rm 2}(t )  = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ - {{\rm a_2}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} t/T})} \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$
 
:$$h_{\rm 2}(t )  = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ - {{\rm a_2}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} t/T})} \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$
  
'''(8)'''&nbsp;&nbsp;  Die gesamte Impulsantwort ohne Berücksichtigung der Phasenlaufzeit ergibt sich damit zu
+
'''(8)'''&nbsp;&nbsp;  The total impulse response without consideration of the phase delay time is thus given by
 
:$$h_{\rm K}(t + \tau_{\rm P})  = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$
 
:$$h_{\rm K}(t + \tau_{\rm P})  = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$
Durch Verschiebung um &nbsp;$τ_{\rm P}$&nbsp; nach rechts ergibt sich die gesuchte Funktion &nbsp;$h_{\rm K}(t)$. Im folgenden Beispiel  wird diese Vorgehensweise durch Grafiken verdeutlicht.
+
By shifting &nbsp;$τ_{\rm P}$&nbsp; to the right, the searched function &nbsp;$h_{\rm K}(t)$is obtained. In the following example, this procedure is illustrated by graphics.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
Für die folgenden Grafiken wird weiterhin eine Zweidrahtleitung mit den Abmessungen &nbsp;$d = 0.4 \ \rm mm$&nbsp; und &nbsp;$l = 1 \ \rm km$&nbsp; vorausgesetzt. Beachten Sie bitte die unterschiedlichen Ordinatenskalierungen der drei Diagramme in der Grafik.
+
For the following graphs, a two-wire line with dimensions &nbsp;$d = 0.4 \ \rm mm$&nbsp; and &nbsp;$l = 1 \ \rm km$&nbsp; is still assumed. Please note the different ordinate scaling of the three diagrams in the graph.
  
*Die Bitrate beträgt &nbsp;$R = 30 \ \rm Mbit/s$  &nbsp; ⇒ &nbsp; Symboldauer &nbsp;$T ≈ 33\ \rm  ns$.  
+
*The bit rate is &nbsp;$R = 30 \ \rm Mbit/s$  &nbsp; ⇒ &nbsp; symbol duration &nbsp;$T ≈ 33\ \rm  ns$.  
*Wir gehen von den im gelben Kasten angegebenen Größen aus, die auf der letzten Seite berechnet wurden.  
+
*We assume the quantities given in the yellow box, calculated on the last page.
*Der &nbsp;$b_2$–Wert wird dazu von &nbsp;$8.75 \ \rm rad$&nbsp; auf &nbsp;$6.55 \ \rm rad$&nbsp; verändert und damit an den &nbsp;${\rm a}_2$–Wert angepasst.  
+
*For this purpose, the &nbsp;$b_2$ value is changed from &nbsp;$8.75 \ \rm rad$&nbsp; to &nbsp;$6.55 \ \rm rad$&nbsp; to match the &nbsp;${\rm a}_2$ value.  
*Die Auswirkungen dieser Maßnahme werden auf der nächsten Seite interpretiert.
+
*The effects of this measure are interpreted on the next page.
[[File:EN_LZI_T_4_3_S4.png|right|frame| Zur Berechnung der Impulsantwort einer Zweidrahtleitung]]   
+
[[File:EN_LZI_T_4_3_S4.png|right|frame| For calculating the impulse response of a two-wire line]]   
  
  
Oben rechts ist &nbsp;$h_1(t) = h_{\rm α1}(t + τ_{\rm P})$&nbsp; dargestellt. Dieser Anteil geht auf die Anteile &nbsp;$α_1$&nbsp; und &nbsp;$β_1$&nbsp; zurück. $h_1(t)$&nbsp; ist eine bezüglich der Phasenlaufzeit &nbsp;$τ_{\rm P}$&nbsp; symmetrische Funktion mit dem Maximalwert &nbsp;$(1.5T)^{–1}$, wobei der &nbsp;$1/(1 + t^2$)–Abfall bei &nbsp;$ \pm 5T$&nbsp; $($rechts und links von &nbsp;$τ_{\rm P})$ schnell abgeklungen ist.
+
On the top right &nbsp;$h_1(t) = h_{\rm α1}(t + τ_{\rm P})$&nbsp; is shown. This component is due to the &nbsp;$α_1$&nbsp; and &nbsp;$β_1$&nbsp; coefficients. $h_1(t)$&nbsp; is a symmetric function with respect to the phase delay time &nbsp;$τ_{\rm P}$&nbsp; with the maximum value &nbsp;$(1.5T)^{–1}$, where the &nbsp;$1/(1 + t^2$) decrease is rapidly decreased at &nbsp;$ \pm 5T$&nbsp; $($right and left of &nbsp;$τ_{\rm P})$.
  
Das linke untere Diagramm zeigt den Signalanteil &nbsp;$h_2(t)$, der auf die beiden Koeffizienten &nbsp;$α_2$&nbsp; und &nbsp;$β_2$&nbsp; zurückgeht. $h_2(t)$&nbsp; ist identisch mit der &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Impulsantwort_eines_Koaxialkabels|Koaxialkabel–Impulsantwort]]&nbsp;  (ohne Berücksichtigung der Laufzeit), wenn die charakteristische Kabeldämpfung &nbsp;$6.55 \ \rm Np$&nbsp; bzw. &nbsp;$56.9 \ \rm dB$&nbsp; beträgt.  
+
The lower left diagram shows the signal component &nbsp;$h_2(t)$, due to the two coefficients &nbsp;$α_2$&nbsp; and &nbsp;$β_2$&nbsp;. $h_2(t)$&nbsp; is identical to the &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Impulsantwort_eines_Koaxialkabels|coaxial cable impulse response]]&nbsp;  (ignoring delay time) when the characteristic cable attenuation is &nbsp;$6.55 \ \rm Np$&nbsp; or &nbsp;$56.9 \ \rm dB$&nbsp;.  
  
Die rote Kurve stellt das Faltungsprodukt &nbsp;$h_1(t) ∗ h_2(t)$&nbsp; dar. Man erkennt, dass die Kurvenform im wesentlichen durch &nbsp;$h_2(t)$&nbsp; festliegt. Die Faltung mit &nbsp;$h_1(t)$&nbsp; führt aber neben einem Amplitudenverlust um ca. &nbsp;$10\%$&nbsp; auch zu einer (leichten) Verfälschung der Signalform.  
+
The red curve represents the convolution product &nbsp;$h_1(t) ∗ h_2(t)$&nbsp;. It can be seen that the waveform is essentially fixed by &nbsp;$h_2(t)$&nbsp;. However, convolution with &nbsp;$h_1(t)$&nbsp; leads to a (slight) distortion of the waveform in addition to an amplitude loss of about &nbsp;$10\%$&nbsp;.  
  
Die resultierende Impulsantwort der&nbsp; $\text{0.4mm}$–Zweidrahtleitung ist im unteren rechten Diagramm als blaue Kurve dargestellt. Der Unterschied zum rot gezeichneten Faltungsprodukt &nbsp;$h_1(t) ∗ h_2(t)$&nbsp; ergibt sich durch den Einfluss der Gleichsignaldämpfung $($Koeffizient &nbsp;$α_0)$. }}
+
The resulting impulse response of the&nbsp; $\text{0.4mm}$ two-wire line is shown as a blue curve in the lower right diagram. The difference to the convolution product &nbsp;$h_1(t) ∗ h_2(t)$&nbsp; drawn in red results from the influence of the DC signal attenuation $($coefficient &nbsp;$α_0)$. }}
  
  
Die vorgestellte Methode können Sie sich für beliebige Kenngrößen (Durchmesser, Länge, Bitrate) mit dem Applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]&nbsp; verdeutlichen.
+
You can illustrate the presented method for arbitrary parameters (diameter, length, bit rate) with the (German language)  interactive SWF applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]&nbsp; &rArr; &nbsp; "Time behavior of copper cables".&nbsp;
  
  
==Diskussion der gefundenen Näherungslösung==
+
==Discussion of the approximate solution found==
 
<br>
 
<br>
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;  
+
$\text{Example 4:}$&nbsp;  
Die folgende Grafik zeigt die (normierten) Impulsantworten &nbsp;$T · h_{\rm K}(t)$&nbsp; für zwei beispielhafte Kupferkabel, nämlich
+
The following graph shows the (normalized) impulse responses &nbsp;$T · h_{\rm K}(t)$&nbsp; for two exemplary copper cables, namely
  
[[File:EN_LZI_T_4_3_S5.png|right|frame| Impulsantwortnäherungen von Normalkoaxialkabeln (oben) und&nbsp; $\text{0.4 mm}$&nbsp; Zweidrahtleitung (unten)]]
+
[[File:EN_LZI_T_4_3_S5.png|right|frame| Impulse response approximations of normal coaxial cable (top) and&nbsp; $\text{0.4 mm}$&nbsp; two-wire cable (bottom)]]
 
   
 
   
*für das&nbsp; $\text{Normalkoaxialkabel 2.6/9.5 mm}$&nbsp; bei&nbsp; $\text{10.1 km}$&nbsp; Länge (oben), wobei gilt:
+
*for the&nbsp; $\text{standard coaxial cable 2.6/9.5 mm}$&nbsp; at&nbsp; $\text{10.1 km}$&nbsp; length (above), where:
 
:$$a_0 = 0.016\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
:$$a_0 = 0.016\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.020\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.020\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
Line 213: Line 213:
 
:$$\tau_{ {\rm P} }/T = 350\hspace{0.05cm}, \hspace{0.15cm}  
 
:$$\tau_{ {\rm P} }/T = 350\hspace{0.05cm}, \hspace{0.15cm}  
 
b_2 = 6.177\,{\rm rad}\hspace{0.05cm};$$
 
b_2 = 6.177\,{\rm rad}\hspace{0.05cm};$$
*für die $\text{0.4 mm Zweidrahtleitung}$ mit der Länge $\text{1.8 km}$ (unten) mit den Kenngrößen
+
*for the $\text{0.4 mm two-wire line}$ with the length $\text{1.8 km}$ (below) with the parameters
 
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
Line 220: Line 220:
 
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
 
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
  
Diese Werte gelten für die Bitrate &nbsp;$R = 10 \ \rm Mbit/s$ &nbsp;  ⇒  &nbsp; Zeitnormierung &nbsp;$T = 0.1 \ \rm &micro; s$.  
+
These values are valid for bit rate &nbsp;$R = 10 \ \rm Mbit/s$ &nbsp;  ⇒  &nbsp; time normalization &nbsp;$T = 0.1 \ \rm &micro; s$.  
  
*Die beiden Kabellängen wurden so gewählt, dass sich genau gleiche &nbsp;$a_2$–Parameter ergeben.  
+
*The two cable lengths were chosen to give exactly equal &nbsp;$a_2$ parameters.  
*Für die Zweidrahtleitung wurde der Phasenwert &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; so angepasst, dass sich wie beim Koaxialkabel für &nbsp;$b_2\hspace{0.05cm}' = 6.177 \ \rm rad$&nbsp; und &nbsp;$a_2 = 6.177 \ \rm Np \ (≈ 53 \ dB)$&nbsp; gleiche Zahlenwerte ergeben.
+
*For the two-wire cable, the phase value &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; was adjusted to give equal numerical values for &nbsp;$b_2\hspace{0.05cm}' = 6.177 \ \rm rad$&nbsp; and &nbsp;$a_2 = 6.177 \ \rm Np \ (≈ 53 \ dB)$&nbsp; as for the coaxial cable.
 
<br clear=all>
 
<br clear=all>
Die blauen Kurven zeigen die Näherungen bei Vernachlässigung der &nbsp;$a_0–, &nbsp;a_1–$ und &nbsp;$b_1–$Terme.&nbsp; Aufgrund der Phasenanpassung &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; bei der Zweidrahtleitung ergeben sich gleiche Kurvenverläufe.&nbsp; Das Maximum von ca. &nbsp;$3.8\%$&nbsp; liegt bei etwa &nbsp;$t/T = 4$&nbsp; (unterschiedlichen Zeitmaßstäbe in beiden Diagrammen!).  
+
The blue curves show the approximations when the &nbsp;$a_0, &nbsp;a_1$ and &nbsp;$b_1$ terms are neglected.&nbsp; Due to the &nbsp;$b_2  ⇒  b_2\hspace{0.01cm}'$&nbsp; phase matching for the two-wire line, the curves are the same.&nbsp; The maximum of about &nbsp;$3.8\%$&nbsp; is at about &nbsp;$t/T = 4$&nbsp; (different time scales in both diagrams!).  
  
Die roten Kurven berücksichtigen auch die &nbsp;$a_0–, &nbsp;a_1–$ und &nbsp;$b_1–$Terme.&nbsp; Die rote Kurve des Koaxialkabels ist die tatsächliche (normierte) Impulsantwort &nbsp;$T · h_{\rm K}(t)$.  
+
The red curves also take into account the &nbsp;$a_0, &nbsp;a_1$ and &nbsp;$b_1 $terms.&nbsp; The red curve of the coaxial cable is the actual (normalized) impulse response &nbsp;$T · h_{\rm K}(t)$.  
  
  
Aus diesen Darstellungen erkennt man weiter:  
+
From these representations, one can further see:
*Beim Koaxialkabel können der &nbsp;$a_0–$Term und der &nbsp;$a_1–$Term vernachlässigt werden.&nbsp; Der dadurch entstehende relative Fehler beträgt nur &nbsp;$3.5\%$.  
+
*For the coaxial cable, the &nbsp;$a_0$ term and the &nbsp;$a_1 $term can be neglected.&nbsp; The resulting relative error is only &nbsp;$3.5\%$.  
*Nicht zu vernachlässigen ist dagegen die Phasenlaufzeit &nbsp;$τ_{\rm P}$, also der &nbsp;$b_1–$Term.&nbsp; Beim Koaxialkabel ergibt sich &nbsp;$τ_{\rm P}/T ≈ 350$, während bei der Zweidrahtleitung &nbsp;$τ_{\rm P}/T ≈ 94$&nbsp; gilt&nbsp; (beachten Sie die unterschiedlichen  Zeitmaßstäbe).  
+
*However, the phase delay time &nbsp;$τ_{\rm P}$, i.e. the &nbsp;$b_1$ term, cannot be neglected.&nbsp; For the coaxial cable this gives &nbsp;$τ_{\rm P}/T ≈ 350$, while for the two-wire line it is &nbsp;$τ_{\rm P}/T ≈ 94$&nbsp;&nbsp; (note the different time scales).
*Bei der Zweidrahtleitung (unten) darf man Gleichsignaldämpfung &nbsp;$(a_0)$&nbsp; und Querverlust &nbsp;$(a_1)$&nbsp; nicht vernachlässigen: &nbsp; <br>Die rote Näherung &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; ist um &nbsp;$70\%$&nbsp; niedriger als die blaue und zudem etwas breiter.}}  
+
*For the two-wire line (below), do not neglect DC signal attenuation &nbsp;$(a_0)$&nbsp; and transverse loss &nbsp;$(a_1)$&nbsp;: &nbsp; <br>The red approximation &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; is &nbsp;$70\%$&nbsp; lower than the blue one and also slightly wider.}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp; Dieses Beispiel zeigt Näherungen der Impulsantwort einer Zweidrahtleitung&nbsp; $($Länge $\text{1.8 km}$, Durchmesser $\text{0.4 mm)}$, so dass entsprechend&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: ''Eigenschaften symmetrischer Ortsanschlusskabel im
+
$\text{Example 5:}$&nbsp; This example shows approximations of the impulse response of a two-wire line&nbsp; $($length $\text{1.8 km}$, diameter $\text{0.4 mm)}$, so that according to&nbsp; [PW95]<ref name="PW95">Pollakowski, P.; Wellhausen, H.-W.: ''Eigenschaften symmetrischer Ortsanschlusskabel im
 
Frequenzbereich bis 30 MHz.'' Deutsche Telekom AG, Forschungs- und Technologiezentrum
 
Frequenzbereich bis 30 MHz.'' Deutsche Telekom AG, Forschungs- und Technologiezentrum
Darmstadt, 1995.</ref>&nbsp; von folgenden Kenngrößen auszugehen ist:
+
Darmstadt, 1995.</ref>&nbsp; the following parameters can be assumed:
[[File:EN_LZI_T_4_3_S5c.png|frame| Zur Impulsantwort einer&nbsp; $\text{0.4 mm}$&nbsp; Zweidrahtleitung]]
+
[[File:EN_LZI_T_4_3_S5c.png|frame| For the impulse response of a&nbsp; $\text{0.4 mm}$&nbsp; two-wire cable]]
 
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
:$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
 
a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm}
Line 247: Line 247:
 
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
 
b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$
  
Das obere Diagramm gleich dem unteren Diagramm im&nbsp; $\text{Beispiel 4}$ – zeigt zwei Näherungen
+
The upper diagram equal to the lower diagram in&nbsp; $\text{Example 4}$ – shows two approximations
*bei Vernachlässigung der &nbsp;$a_0–, \ a_1–$&nbsp; und &nbsp;$b_1–$Terme (blaue Kurve),  
+
*with neglection of the &nbsp;$a_0, \ a_1$&nbsp; and &nbsp;$b_1$ terms (blue curve),  
*bei Berücksichtigung der &nbsp;$a_0–, \ a_1–$&nbsp; und &nbsp;$b_1–$Terme (rote Kurve).  
+
*with consideration of the &nbsp;$a_0, \ a_1$&nbsp; and &nbsp;$b_1$ terms (red curve).  
  
  
Für dieses obere Diagramm haben wir weiterhin den in [PW95]<ref name="PW95"/> angegebenen &nbsp;$a_2–$Koeffizienten übernommen und den genannten Koeffizienten &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; auf &nbsp;$b_2\hspace{0.01cm}' = 6.177 \ \rm rad$&nbsp; herabgesetzt.  
+
For this upper diagram, we further adopted the &nbsp;$a_2$ coefficient given in [PW95]<ref name="PW95"/> and lowered the mentioned coefficient &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; to &nbsp;$b_2\hspace{0.01cm}' = 6.177 \ \rm rad$&nbsp;.  
  
''Anmerkung'': &nbsp; Im Gegensatz zum Koaxialkabel im &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Interpretation_und_Manipulation_der_einzelnen_Impulsantworten|$\text{Beispiel 3}$]]&nbsp; ist hier wegen &nbsp;$b_2\hspace{0.01cm}' ≠ b_2$&nbsp; die rote Kurve &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; ebenfalls nur eine Näherung, was in der Grafik durch das Hochkomma vermerkt ist.
+
''Note'': &nbsp; In contrast to the coaxial cable in &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Interpretation_und_Manipulation_der_einzelnen_Impulsantworten|$\text{Example 3}$]],&nbsp; because of &nbsp;$b_2\hspace{0.01cm}' ≠ b_2$&nbsp; the red curve &nbsp;$T · h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; is also only an approximation, which is indicated in the graphic by the apostrophe.
 
<br clear=all>
 
<br clear=all>
Ohne die Korrektur &nbsp;$b_2\hspace{0.01cm}' = a_2 ·  \text{rad/Np}$&nbsp; wäre die &nbsp;[[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], die den  Zusammenhang zwischen Betrag und Phase bei realen und damit  &nbsp;[https://de.wikipedia.org/wiki/Minimalphasensystem minimalphasigen Systemen]&nbsp; herstellt, nicht erfüllt. Deshalb ergäbe sich eine akausale Impulsantwort.  
+
Without the correction &nbsp;$b_2\hspace{0.01cm}' = a_2 ·  \text{rad/Np}$,&nbsp; the &nbsp;[[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert Transformation]], which establishes the relationship between magnitude and phase in real and thus establishes &nbsp;[https://en.wikipedia.org/wiki/Minimum_phase minimum-phase systems],&nbsp; would not be satisfied. Therefore, it would result in an acausal impulse response.  
  
Wir glauben deshalb, dass auch bei einer Zweidrahtleitung die beiden Parameter &nbsp;$a_2$&nbsp; und &nbsp;$b_2$&nbsp; gleiche Zahlenwerte haben müssten.  
+
We therefore believe that even for a two-wire line, the two parameters &nbsp;$a_2$&nbsp; and &nbsp;$b_2$&nbsp; should have equal numerical values.
  
Wir betrachten nun einen zweiten Ansatz, der im unteren Diagramm dargestellt ist:  
+
We now consider a second approach, shown in the diagram below:
*Hier wurde für der in&nbsp; [PW95]<ref name="PW95"/>&nbsp; angegebene  Phasenkoeffizient &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; beibehalten.
+
*Here, the phase coefficient &nbsp;$b_2 = 8.260 \ \rm rad$&nbsp; given in&nbsp; [PW95]<ref name="PW95"/>&nbsp; was kept.
*Stattdessen wurde der Dämpfungskoeffizient &nbsp;$a_2 = 6.177 \ \rm Np$&nbsp; an den Phasenkoeffizienten angepasst (also vergrößert): &nbsp; $a_2\hspace{0.01cm}' = 8.260 \ \rm Np$.  
+
*Instead, the attenuation coefficient &nbsp;$a_2 = 6.177 \ \rm Np$&nbsp; was adjusted to the phase coefficient (i.e., enlarged): &nbsp; $a_2\hspace{0.01cm}' = 8.260 \ \rm Np$.  
*Die untere (rote) Impulsantwort &nbsp; ⇒ &nbsp;  (''Worst Case'')&nbsp; ist weniger als halb so hoch und deutlich breiter als die obere Impulsantwort &nbsp;  ⇒ &nbsp;  (''Best Case'').  
+
*The lower (red) impulse response &nbsp; ⇒ &nbsp;  (''worst case'')&nbsp; is less than half as high and much wider than the upper impulse response &nbsp;  ⇒ &nbsp;  (''Best Case'').  
*Die tatsächliche (normierte) Impulsantwort &nbsp;$T \cdot h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; wird wohl dazwischen liegen. Genauere Aussagen erlauben wir uns nicht.}}  
+
*The actual (normalized) impulse response &nbsp;$T \cdot h_{\rm K}\hspace{0.01cm}'(t)$&nbsp; will probably lie in between. We do not allow ourselves to make more precise statements.}}  
  
==Störungen auf Zweidrahtleitungen==
+
==Interferences on two-wire lines==
 
<br>
 
<br>
Bei Übertragungssystemen über Zweidrahtleitungen kann vom gleichen &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Besonderheiten_von_Koaxialkabelsystemen|Blockschaltbild]]&nbsp; wie bei den Koaxialkabelsystemen ausgegangen werden, wobei nun
+
For transmission systems over two-wire lines, the same &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Besonderheiten_von_Koaxialkabelsystemen|block diagram]]&nbsp; can be assumed as for the coaxial cable systems, where now
*für den Frequenzgang &nbsp;$H_{\rm K}(f)$&nbsp; und die Impulsantwort &nbsp;$h_{\rm K}(t)$&nbsp; die in diesem Abschnitt angegebenen Gleichungen zu verwenden sind,  
+
*for the frequency response &nbsp;$H_{\rm K}(f)$&nbsp; and the impulse response &nbsp;$h_{\rm K}(t)$&nbsp; the equations given in this section are to be used,
*das weiße Rauschen &nbsp;$N_0$&nbsp; nicht mehr die  dominante Störungsursache ist, sondern nun das&nbsp; '''Nebensprechen'''&nbsp; ''(Crosstalk)''&nbsp; aufgrund von kapazitiver bzw. induktiver Kopplung benachbarter Doppeladern als stochastische Störung überwiegt.  
+
*white noise &nbsp;$N_0$&nbsp; is no longer the dominant cause of interference, but&nbsp; '''crosstalk'''&nbsp; due to capacitive or inductive coupling of adjacent pairs now predominates as a stochastic interference.
  
  
Durch Verdrillen der Doppeladern eines Sternvierers sowie der Grund– und Hauptbündel entsprechend der Grafik am Ende des Kapitels &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Zugangsnetz_eines_Telekommunikationssystems|Zugangsnetz eines Telekommunikationssystems]]&nbsp; wird versucht, im Mittel eine möglichst symmetrische gegenseitige Kopplung zwischen allen Aderpaaren zu erreichen. Aufgrund unvermeidbarer Fertigungstoleranzen bleibt aber immer eine leichte Unsymmetrie bestehen. Diese bewirkt, dass
+
By twisting the twisted pairs of a star quad as well as the basic and main bundles according to the diagram at the end of the chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Zugangsnetz_eines_Telekommunikationssystems|Access network of a telecommunications system]]&nbsp; an attempt is made to achieve as symmetrical a mutual coupling as possible between all pairs of cores on average. Due to unavoidable manufacturing tolerances, however, a slight asymmetry always remains. This causes
*an jeden Empfängereingang neben dem "eigenen" Nutzsignal auch (meist allerdings nur geringe) Signalanteile  von benachbarten Doppeladern gelangen,  
+
*in addition to its "own" useful signal, each receiver input also receives (usually only small) signal components from neighboring pairs of cores,
*die induzierten Signalanteile für das Nutzsignal eine zusätzliche stochastische Störung darstellen, die zusammen mit dem thermischen Rauschen das resultierende Störsignal &nbsp;$n(t)$&nbsp; ergeben,  
+
*the induced signal components represent an additional stochastic interference for the useful signal, which together with the thermal noise results in the resulting interference signal &nbsp;$n(t)$&nbsp;,  
*man die Übertragungsqualität nicht oder nur sehr begrenzt durch Erhöhung der Sendeleistung verbessern kann, da durch diese Maßnahme auch die Nebensprechstörungen größer werden.
+
*the transmission quality cannot be improved or can only be improved to a very limited extent by increasing the transmitting power, since this measure also increases the crosstalk interference.
  
  
[[File:EN_LZI_T_4_3_S6.png |right|frame|Zur Verdeutlichung von Nahnebensprechen (NEXT) und Fernnebensprechen (FEXT)]]
+
[[File:EN_LZI_T_4_3_S6.png |right|frame|To clarify near-end crosstalk (NEXT) and far-end crosstalk (FEXT)]]
  
Wie die Grafik verdeutlicht, unterscheidet man zwischen
+
As the diagram illustrates, a distinction is made between
*'''Nahnebensprechen'''&nbsp; ''(Near–End–Crosstalk'' &nbsp; ⇒ &nbsp; NEXT): <br>Der störende Sender speist sein Signal am selben Ende des Kabels ein, an dem der betrachtete Empfänger platziert ist.  
+
*'''Near-End Crosstalk'''&nbsp; (NEXT): <br>The interfering transmitter feeds its signal at the same end of the cable where the receiver under consideration is placed.
  
  
*'''Fernnebensprechen'''&nbsp; ''(Far–End–Crosstalk'' &nbsp; ⇒ &nbsp; FEXT): <br>Der störende Sender und der gestörte Empfänger befinden sich an entgegengesetzten Kabelenden.  
+
*'''Far–End–Crosstalk'''&nbsp; (FEXT): <br>The interfering transmitter and the interfering receiver are located at opposite ends of the cable.  
  
  
Bei FEXT akkumuliert sich zwar die Störung über die gesamte Kabellänge, wird aber auch durch die Kabeldämpfung stark abgeschwächt. Für gebündelte Kabel im Teilnehmeranschlussbereich ergeben sich somit durch das "Im–Vierer–Nahnebensprechen" um Größenordnungen größerere Störungen als durch das Fernnebensprechen, und auch die Nahnebensprechstörungen von benachbarten Adern können meist vernachlässigt werden.  
+
In the case of FEXT, the interference accumulates over the entire cable length, but is also greatly attenuated by the cable attenuation. For bundled cables in the local loop area, "in quad crosstalk" thus results in orders of magnitude greater interference than long-distance crosstalk, and even near-end crosstalk interference from adjacent cores can usually be neglected.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Ohne Herleitung:}$&nbsp;  
+
$\text{Without derivation:}$&nbsp;  
Wir betrachten deshalb  im Folgenden ausschließlich das&nbsp; $\text{Nahnebensprechen (NEXT)}$.&nbsp; Bei diesem lässt sich das&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Leistungsdichtespektrum]]&nbsp;  (LDS) des Störsignals &nbsp;$n(t)$&nbsp; unter Berücksichtigung des unvermeidbaren thermischen Rauschens &nbsp;$(N_0/2)$&nbsp; wie folgt darstellen:
+
We therefore consider only&nbsp; $\text{Near-End Crosstalk (NEXT)}$ in the following.&nbsp; In this case, the&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|power density spectrum]]&nbsp;  (PDS) of the interference signal &nbsp;$n(t)$&nbsp; can be represented as follows, taking into account the unavoidable thermal noise &nbsp;$(N_0/2)$&nbsp;:
 
:$${\it \Phi}_n(f)  =  {N_0}/{2}+{\it \Phi}_{\rm NEXT}(f) \hspace{0.05cm},\hspace{0.3cm}{\rm mit} \hspace{0.3cm}{\it \Phi}_{\rm NEXT}(f)  = {\it \Phi}_{s}(f) \cdot\vert H_{\rm NEXT}(f)\vert ^2 \approx {\it \Phi}_{s}(f) \cdot [K_{\rm NEXT} \cdot f]^{3/2}\hspace{0.05cm}.$$}}
 
:$${\it \Phi}_n(f)  =  {N_0}/{2}+{\it \Phi}_{\rm NEXT}(f) \hspace{0.05cm},\hspace{0.3cm}{\rm mit} \hspace{0.3cm}{\it \Phi}_{\rm NEXT}(f)  = {\it \Phi}_{s}(f) \cdot\vert H_{\rm NEXT}(f)\vert ^2 \approx {\it \Phi}_{s}(f) \cdot [K_{\rm NEXT} \cdot f]^{3/2}\hspace{0.05cm}.$$}}
  
  
Zu dieser Gleichung ist anzumerken:  
+
It should be noted about this equation:
*Die Gleichung ergibt sich durch Integration der lokalen Kopplungen über die gesamte Länge eines kurzen Abschnitts, wobei die Kopplungen zwischen allen Kupferleitungen durch Querkapazitäten und –Induktivitäten modelliert werden.  
+
*The equation is obtained by integrating the local couplings over the entire length of a short section, where the couplings between all copper lines are modeled by cross capacitances and inductances.
* ${\it \Phi}_s(f)$&nbsp; ist das LDS des störenden Senders, woraus sich durch Integration die Sendeleistung &nbsp;$P_{\rm S}$&nbsp; ergibt.&nbsp; Nimmt man an, dass die gestörte Übertragung das gleiche Sendesignal und damit auch das gleiche LDS &nbsp;${\it \Phi}_s(f)$&nbsp;  wie der Störer verwendet, so wird deutlich, dass durch eine Erhöhung von &nbsp;$P_{\rm S}$&nbsp; lediglich der (relative) Einfluss des thermischen Rauschens &nbsp;$(N_0/2)$&nbsp; vermindert wird.  
+
* ${\it \Phi}_s(f)$&nbsp; is the PDS of the interfering transmitter, from which the transmit power &nbsp;$P_{\rm S}$&nbsp; is obtained by integration.&nbsp; Assuming that the interfered transmission uses the same transmit signal and thus the same PDS &nbsp;${\it \Phi}_s(f)$&nbsp;  as the interferer, it is clear that increasing &nbsp;$P_{\rm S}$&nbsp; only reduces the (relative) influence of thermal noise &nbsp;$(N_0/2)$&nbsp;.  
*Der das Nahnebensprechen quantifizierende Faktor &nbsp;$K_{\rm NEXT}$&nbsp; hängt stark vom Adernabstand ab, ebenso vom Unsymmetriegrad entlang des Kabels.&nbsp; Dagegen ist dieser Faktor &nbsp;$K_{\rm NEXT}$&nbsp; nahezu unabhängig vom Leiterdurchmesser &nbsp;$d$&nbsp; und von der Leitungslänge &nbsp;$l$.  
+
*The factor &nbsp;$K_{\rm NEXT}$&nbsp; quantifying the near-end crosstalk depends strongly on the core spacing, as well as on the degree of unbalance along the cable.&nbsp; In contrast, this factor &nbsp;$K_{\rm NEXT}$&nbsp; is almost independent of the conductor diameter &nbsp;$d$&nbsp; and the cable length &nbsp;$l$.  
*Das Produkt &nbsp;$K_{\rm NEXT} · f$&nbsp; (dimensionslos) ist im gesamten Betriebsbereich der Leitung, zum Beispiel für alle Frequenzen &nbsp;$0 ≤ f ≤ 30 \ \rm MHz$, stets sehr viel kleiner als $1$.&nbsp; Die Nebensprechstörung steigt mit der Frequenz stark $($das heißt mit dem Exponenten $1.5)$ an.  
+
*The product &nbsp;$K_{\rm NEXT} · f$&nbsp; (dimensionless) is always much smaller than $1$ over the entire operating range of the cable, for example, for all frequencies &nbsp;$0 ≤ f ≤ 30 \ \rm MHz$.&nbsp; The crosstalk interference increases sharply $($that is, with exponent $1.5)$ with frequency.  
*In&nbsp; [PW95]<ref name="PW95"/>&nbsp; werden nach einer Messreihe über vierzig Doppeladern für die Frequenz &nbsp;$f = 10 \ \rm MHz$&nbsp; folgende Werte genannt&nbsp; $($für &nbsp;$f = 30 \ \rm MHz$&nbsp; sind diese Werte noch mit &nbsp;$3^{3/2} ≈ 5.2$&nbsp; zu multiplizieren$)$:  
+
*In&nbsp; [PW95]<ref name="PW95"/>&nbsp; , the following values are given after a series of measurements over forty pairs for the frequency &nbsp;$f = 10 \ \rm MHz$&nbsp;&nbsp; $($for &nbsp;$f = 30 \ \rm MHz$&nbsp; these values must still be multiplied by &nbsp;$3^{3/2} ≈ 5.2$&nbsp;$)$:  
:* ungünstigster Fall: &nbsp; $|H_{\rm NEXT}(f = 10 \ \rm MHz)|^2 ≈ 0.001$,
+
:* worst case: &nbsp; $|H_{\rm NEXT}(f = 10 \ \rm MHz)|^2 ≈ 0.001$,
:* Mittelung über 40 Adern: &nbsp; $|H_{\rm NEXT}(f = \ \rm 10 MHz)|^2 ≈ 0.0004$.  
+
:* Averaging over 40 cores: &nbsp; $|H_{\rm NEXT}(f = \ \rm 10 MHz)|^2 ≈ 0.0004$.  
*Die Werte gelten für das Im–Vierer–Nahnebensprechen&nbsp; (störender Sender und gestörter Empfänger im gleichen Sternvierer).  
+
*The values apply to in-four near-end crosstalk&nbsp; (interfering transmitter and interfering receiver in the same star quad).  
*Nahnebensprechstörungen zwischen weiter entfernten Adern weisen zwar die gleiche Frequenzabhängigkeit auf, sind aber kleiner als das Im–Vierer–Nahnebensprechen:  
+
*Near-end crosstalk interference between more distant cores exhibits the same frequency dependence, but is smaller than in-four near-end crosstalk:  
:* Nahnebensprechen zwischen benachbarten Sternvierern um ca. &nbsp;$5 \ \rm dB$,  
+
:* Near-end crosstalk between adjacent star quads by about &nbsp;$5 \ \rm dB$,  
:* Nahnebensprechen zwischen benachbarten Grundbündeln um ca. &nbsp;$10 \ \rm dB$,  
+
:* Near-end crosstalk between adjacent ground bundles by about &nbsp;$10 \ \rm dB$,  
:* Nahnebensprechen zwischen nicht benachbarten Grundbündeln um ca. &nbsp;$25 \ \rm dB$.  
+
:* Near-end crosstalk between non-adjacent ground bundles by about &nbsp;$25 \ \rm dB$.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
*Um solche Nahnebensprechstörungen zu vermeiden oder zumindest zu vermindern, werden benachbarte Doppeladern häufig mit ganz unterschiedlichen Signalen&nbsp; (analoge Telefonie, ISDN, DSL oder andere breitbandige Dienste)&nbsp; belegt, die möglichst auch noch unterschiedliche Frequenzbänder benutzen.  
+
*In order to avoid or at least reduce such near-end crosstalk interference, adjacent pairs of wires are often occupied by completely different signals&nbsp; (analog telephony, ISDN, DSL or other broadband services)&nbsp; which also use different frequency bands if possible.
*Durch geschickte Auswahl der Doppeladern können nun benachbarte Adern mit Signalen belegt werden, deren Spektren möglichst wenig überlappen, wodurch die Nebensprechstörungen vermindert werden.}}  
+
*By clever selection of the twisted pairs, adjacent cores can now be occupied with signals whose spectra overlap as little as possible, thus reducing crosstalk interference.}}  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
  
[[Aufgaben:4.6_k-Parameter und Alpha-Parameter| Aufgabe 4.6: $k$-Parameter und $\alpha$-Parameter]]
+
[[Aufgaben:Exercise_4.6:_K-Parameters_and_Alpha-Parameters| Exercise 4.6: $k$-Parameters and $\alpha$-Parameters]]
  
[[Aufgaben:4.6Z_ISDN-Versorgungsleitungen|Aufgabe 4.6Z: ISDN-Versorgungsleitungen]]
+
[[Aufgaben:Exercise_4.6Z:_ISDN_Supply_Lines|Exercise 4.6Z: ISDN Supply Lines]]
  
[[Aufgaben:4.7_Kupfer-Doppelader 0.5 mm| Aufgabe 4.7: Kupfer-Doppelader 0.5 mm]]
+
[[Aufgaben:Exercise_4.7:_Copper_Twin_Wire_0.5_mm| Exercise 4.7: Copper Twin Wire 0.5 mm]]
  
[[Aufgaben:4.8_Nebensprechstörungen| Aufgabe 4.8: Nebensprechstörungen]]
+
[[Aufgaben:Exercise_4.8:_Near-end_and_Far-end_Crosstalk_Disorders| Exercise 4.8: Near-end and Far-end Crosstalk Disorders]]
  
  
==Quellenverzeichnis==
+
==List of sources==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Revision as of 16:52, 18 November 2021

Access network of a telecommunications system


Local loop area for ISDN

In a telecommunications system, a distinction is made between

  • the long-distance and regional network and
  • the local loop area,


which are separated from each other by the local exchange. The graphic shows the network infrastructure for  $\rm ISDN$  (Integrated Services Digital Network).

Originally, the entire telephone network was based on copper lines. In the mid-1980s, however, the (mainly coaxial) copper cables were replaced by optical fiber for long-distance traffic, as the steadily growing demand for bandwidth could only be met with optical transmission technology.

  • Due to the immensely high installation costs, optical fibers in the local loop area are still not economically viable today (2009), although plans for  Fiber–to–the–Building  (FttB) and  Fiber–to–the–Home  (FttH) have long been in the pipeline.
  • Instead, over the past twenty years, the path has been taken to provide sufficient capacity via the conventional access network based on copper lines by developing and improving high-rate transmission systems such as  $\rm DSL$  (Digital Subscriber Line) .


$\text{Example 1:}$  In Germany, this so-called "Last Mile"   (⇒   the local loop area)  is shorter than four kilometers on average in the country, and in urban areas  $90\%$  of the time even shorter than  $\text{2.8 km}$.  The local loop area is usually structured as follows:

Bundling and twisting of copper wires
  • the main cable  with up to  $2000$  pairs as a connection between the local exchange and the cable branch,
  • the branch cable  between the cable branch and the final branch, with up to  $300$  pairs and significantly shorter than a main cable  $($maximum  $\text{500 m)}$,
  • the house connection cable  between the terminal box and the network termination box at the subscriber with two pairs of wires.


To reduce crosstalk on neighboring line pairs due to inductive and capacitive couplings and to increase the packing density, two pairs of twisted pairs are twisted into a so-called  "star quad" .  The diagram below shows such a star quad and a bundled cable.

  • Here, five such quads each are combined to form a basic bundle, and five basic bundles each are combined to form a main bundle.
  • This thus contains  $50$  twin pairs with PE insulation  (PE:  polyethylene).


Attenuation function of two-wire lines


The attenuation function per unit length  $α(f)$  and the wave impedance  $Z_{\rm W}(f)$  of twisted pairs in real laid cables deviate to a greater or lesser extent from the theory presented in the chapter  Some Results from Line Transmission Theory . Reasons for this are:

Attenuation function of two-wire lines of different diameters
  • Non-consideration of complex processes of eddy current formation and current displacement,  and
  • Inhomogeneities in cable structure in spliced cable sections.


Various network operators have measured  $α(f)$  and  $Z_{\rm W}(f)$  and derived empirical equations from them.   We refer here to the work of M. Pollakowski and H.W. Wellhausen of the Fernmeldetechnisches Zentralamt der Deutschen Bundespost in Darmstadt documented in  [PW95][1] .

They determined for different line diameters  $d$  among other things the empirical attenuation function per unit length from forty measurements each in the frequency range up to  $\text{30 MHz}$  according to the equation

$$\alpha (f) = k_1 + k_2 \cdot (f/{\rm MHz})^{k_3} \hspace{0.05cm}.$$

The graph shows the measurement results:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


One can see from this representation:

  • Attenuation function per unit lenth  $α(f)$  and attenuation function  $a_{\rm K}(f) = α(f) · l$  depend significantly on the cable diameter. The cables laid since 1994 with  $d = 0.35 \ \rm (mm)$  and  $d = 0.5$  have about  $10\%$  larger attenuation function per unit length than the older cables with  $d = 0.4$  and  $d= 0.6$.
  • However, this smaller diameter, justified by the manufacturing and laying costs, significantly reduces the range  $l_{\rm max}$  of the transmission systems used on these lines, so that in the worst case expensive intermediate generators have to be used.
  • The transmission methods commonly used today for copper lines, however, occupy only a relatively narrow frequency band, for example $120\ \rm kHz$  for $\rm ISDN$ (Integrated Services Digital Network)  and about $1100 \ \rm kHz$ for $\rm DSL$ (Digital Subscriber Line).  For  $f = 1 \ \rm MHz$ , the attenuation function per unit length for a  $0.4 \ \rm mm$  cable is about  $20 \ \rm dB/km$, so that even with a cable length of  $l = 4 \ \rm km$  the attenuation value does not exceed  $80 \ \rm dB$ .
  • One exception is  $\rm VDSL$  (Very High Data Rate Digital Subscriber Line), which is offered by Deutsche Telekom in larger cities, for example.  Here, the frequency range goes up to  $30 \ \rm MHz$. For this reason, fiber optic connections were laid right up to the cable branch in order to keep the length that still has to be bridged with copper short.  This is known as Fibre–to–the–Cabinet (FttC).

Conversion between $k$ and $\alpha$ parameters

To calculate the frequency response  $H_{\rm K}(f)$,  one should always start from the measured attenuation function per unit length

$$\alpha (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}= \alpha_{\rm I} (f) \hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz}.$$

If, on the other hand, one wishes to determine the associated time function in terms of the impulse response  $h_{\rm K}(t)$ , it is more convenient, as shown in the  section after the next,  if the attenuation function per unit length can be represented in the form that is also common for coaxial cables:

$$\alpha(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}= \alpha_{\rm II} (f).$$

As a criterion of this conversion we use that the squared deviation between both functions is minimal in the range from  $f = 0$  to  $f = B$ :

$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$

It is obvious that  $α_0 = k_1$  will hold. The parameters  $α_1$  and  $α_2$  depend on the desired bandwidth $B$. According to Exercise 4.6, they are:

$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
  • For  $k_3 = 1$  (frequency-proportional attenuation function per unit length), the $\alpha$–parameters logically result in
$$\alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} ,$$
  • while for  $k_3 = 0.5$  the following coefficients are obtained:
$$\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0}}\hspace{0.05cm}.$$
In this case, the attenuation function per unit length  $α(f)$  increases with the square root of the frequency. This results in the same curve as for a coaxial cable, where the well-known skin effect dominates.


In the following, three examples will illustrate how the underlying bandwidth  $B$  influences the results of this conversion.

$\text{Example 2:}$  In the following graphs we assume the line length  $l = 1 \ \rm km$  and the diameter  $d = 0.4 \ \rm mm$ , so that the following applies:

Approximation of  $k$–parameters  by  $\alpha$–parameters
$$k_1 = 5.1 \ \rm dB/km, \ k_2 = 14.3 \ \rm dB/km, \ k_3 = \ 0.59.$$

For this case the following graph shows

  • the attenuation approximated with  $α_0, α_1$  and  $α_2$  (blue curve)
  • compared to the actual curve according to  $k_1, k_2, k_3$  (red curve).


The three diagrams are valid for the bandwidths  $B = 10 \ \rm MHz$,  $B = 20 \ \rm MHz$  and  $B = \ \rm 30 \ MHz$.

  • The determined coefficients  $α_1$  and  $α_2$  are indicated.
  •  $α_0 = k_1 = 5.1 \ \rm dB/km$ is always valid..


One recognizes from these representations:

  • Even with the largest approximation range  $(B = 30 \ \rm MHz)$ , the blue curve  $($with  $α_0,  α_1,  α_2)$  approximates the measured curve  $($red curve, described by  $k_1, \ k_2, \ k_3)$  very well.
  • For smaller bandwidth  $(B = 20 \ \rm MHz$  or  $B = 10 \ \rm MHz)$  the approximation in the range  $0≤ f ≤ B$  is even better, but then distortions occur for  $f > B$ .
  • The attenuation value  $a_{\rm K}(f = 30 \ \rm MHz) ≈ 112.2 \ \rm dB$  is composed as follows for the considered two-wire cable:  $4.5\%$  is due to the coefficient  $α_0$  (ohmic losses) ,  $23.5\%$  to the  $f$–proportional component  $α_1$  and  $72\%$  to the coefficient  $α_2$.
  • In comparison, the standard  $\text{2.6/9.5 mm}$  coaxial cable exhibits comparable attenuation  $(≈ 112 \ \rm dB)$  only at a length of  $l = 8.7 \ \rm km$  , with most of the attenuation  $(98.9\%)$ coming from the skin effect  $(α_2)$ .


In the opposite direction  $(α_1, \ α_2 ⇒ k_2, \ k_3)$  the conversion rule for the exponent is:

$$k_3 = \frac{H + 0.5} {H +1}, \hspace{0.8cm}\text{Auxiliary: }H = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$

With this result,  $k_2$  can be calculated using either of the two equations given above.


Impulse response of a two-wire line


With this coefficient conversion  $(k_1, \ k_2, \ k_3) \ \ ⇒ \ \ (α_0, \ α_1, \ α_2)$ we can now write for the total frequency response of a two-wire line:

$$H_{\rm K}(f) = H_{\alpha 0}(f) \cdot H_{\alpha 1}(f) \cdot H_{\beta 1}(f)\cdot H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \hspace{0.05cm}.$$

Here, the following abbreviations are used:

$$\begin{align*} H_{\alpha 0}(f) & = {\rm e}^{-\alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}= {\rm e}^{-{\rm a}_0}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_0= \alpha_0\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l,\\ H_{\alpha 1}(f) & = {\rm e}^{-\alpha_1 \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm a}_1 \cdot 2f/R}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_1 = \alpha_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l \cdot {R}/{2} \hspace{0.05cm}, \\ H_{\beta 1}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1 \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}l} = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau_{\rm P}} \hspace{0.05cm},\hspace{0.2cm} \tau_{\rm P} = {\beta_1\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad) }\cdot l }/({2 \pi}) \hspace{0.05cm}, \\ H_{\alpha 2}(f) & = {\rm e}^{-\alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} {\rm a}_2 = \alpha_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}Np) }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm}, \\ H_{\beta 2}(f) & = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm}l}= {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\hspace{0.05cm},\hspace{0.2cm} b_2 = \beta_2\hspace{0.15cm}{\rm (in \hspace{0.15cm}rad) }\cdot l \cdot \sqrt{R/2} \hspace{0.05cm} \end{align*}$$

The meaning of the quantities implicitly defined here will be discussed a little later.

We proceed quite formally here first. According to the  convolution theorem, the resulting impulse response is the  Fourier retransform  of  $H_{\rm K}(f)$:

$$h_{\rm K}(t) = h_{\alpha 0}(t) \star h_{\alpha 1}(t) \star h_{\beta 1}(t)\star h_{\alpha 2}(t) \star h_{\beta 2}(t) \hspace{0.05cm},$$
$$h_{\alpha 0}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 0}(f) \hspace{0.05cm},\hspace{0.2cm} h_{\alpha 1}(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad H_{\alpha 1}(f) \hspace{0.05cm},\hspace{0.2cm} {\rm etc.}$$

These five components are now to be considered separately, with the numerical results referring to

  • a digital transmission system with bit rate  $R = 30 \ \rm Mbit/s$  and
  • a two-wire line with dimensions  $d = 0.4 \ \rm mm$  and  $l = 1 \ \rm km$. 


Thus, the  $α$–coefficients in Neper  (Np) are:

$$\alpha_0 = 0.59\, \frac{ {\rm Np} }{ {\rm km} } \hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.10\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 1.69\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.$$

The phase function per unit length of this line is also given in  [PW95][1] :

$$b_{\rm K}(f) = \beta_1 \cdot f + \beta_2 \cdot \sqrt {f}\hspace{0.05cm}, \hspace{0.2cm} \beta_1 = 32.9\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 2.26\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

The symbol duration  $T = 1/R ≈ 33 \ \rm ns$ is suitable as a normalization quantity of time.

Interpretation and manipulation of the individual impulse responses


Now the five impulse response components  $h_{α0}(t), \ h_{α1}(t), \ h_{α2}(t), \ h_{β1}(t)$  and  $h_{β2}(t)$  are interpreted:

(1)   The first term resulting from the ohmic losses (frequency-independent attenuation) leads to a Dirac function with weight  $K$,  so that the convolution with  $h_{α0}(t)$  can be replaced by the multiplication with  $K = {\rm e}^{–0.59} ≈ 0.55$ :

$$h_{\alpha 0}(t) = K \cdot \delta(t) \hspace{0.25cm}{\rm mit}\hspace{0.25cm} K = {\rm e}^{-{\rm a}_0}\hspace{0.45cm}\Rightarrow\hspace{0.45cm} h_{\rm K}(t) = h_{\alpha 0}(t) \star h_{\rm Rest}(t) = K \cdot h_{\rm Rest}(t)\hspace{0.05cm}.$$

(2)   $H_{α1}(f)$  is a real and even function of frequency, so the Fourier retransform is also real and symmetric at  $t =0$ :

$$H_{\alpha 1}(f) = {\rm e}^{-2\cdot{\rm a}_1 \cdot |f/R|} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{\alpha 1}(t)= \frac{1}{T} \cdot \frac{{\rm a}_1}{{\rm a}_1^2 + \pi \cdot (t/T)^2}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_1 \hspace{0.15cm}{\rm in \hspace{0.15cm}Np } \hspace{0.05cm}.$$
With the exemplary numerical values  $α_1 = 0.1 \ \rm Np/(km · MHz)$,   $l = 1 \ \rm km$,   $R = 30 \ \rm MHz$   ⇒   ${\rm a}_1 = 1.5 \ \rm (Np)$ , we obtain for the maximum of this fraction:
$$h_{α1}(t = 0) = 1/{\rm a}_1 = 2/3 · 1/T.$$

(3)   As for the coaxial cable systems,  $H_{β1}(f)$  does not lead to any signal distortion, but only to a time delay by the  phase delay time:

$$τ_{\rm P} ≈ 5.24 \ \rm µs \hspace{0.2cm} ⇒ \hspace{0.2cm} τ_{\rm P}/T ≈ 157.$$

(4)   Let us turn to the combined consideration of the  $H_{α2}(f)$  and  $H_{β2}(f)$  components, which is described in the time domain by the partial impulse response  $h_2(t)$ :

$$H_{\alpha 2}(f) \cdot H_{\beta 2}(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{2}(t) \hspace{0.05cm}.$$

(5)   To apply the results of the chapter  Properties of Coaxial Cables,  we replace  $β_2$  by  $α_2 · \rm rad/Np$  and  $b_2$  by  ${\rm a}_2 · \text{rad/Np}$,  so that  ${\rm a}_2$  and  $b_2$  have the same numerical value. As an example, we substitute here:

$$ b_2 = 8.75\, {\rm rad}\hspace{0.2cm} \Rightarrow \hspace{0.2cm} b_2 = 6.55 \,{\rm rad}\hspace{0.05cm}.$$
One thus reduces the constant  $β_2 = 2.26 \ \rm rad/(km · \sqrt{MHz})$  to  $β_2 = 1.69 \ \rm rad/(km · \sqrt{MHz})$ .

(6)   Before we unnecessarily lead the reader to consider whether this approximation is indeed valid or not, we freely admit right away that this assumption is the weak point of our reasoning. A discussion of this faulty assumption follows in the  next secction.

(7)   Now that  ${\rm a}_2$  and  $b_2$  have the same numerical values, we can further use the equation given in the chapter  Properties of Coaxial Cables,  substituting  $\rm a_∗$  for  $\rm a_2$ :

$$h_{\rm 2}(t ) = \frac {1/T \cdot {\rm a_2}}{\pi \cdot \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ - {{\rm a_2}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} t/T})} \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_2\hspace{0.15cm}{\rm in \hspace{0.15cm}Np} \hspace{0.05cm}.$$

(8)   The total impulse response without consideration of the phase delay time is thus given by

$$h_{\rm K}(t + \tau_{\rm P}) = K \cdot h_{\alpha 1}(t) \star h_{2}(t)\hspace{0.05cm}.$$

By shifting  $τ_{\rm P}$  to the right, the searched function  $h_{\rm K}(t)$is obtained. In the following example, this procedure is illustrated by graphics.

$\text{Example 3:}$  For the following graphs, a two-wire line with dimensions  $d = 0.4 \ \rm mm$  and  $l = 1 \ \rm km$  is still assumed. Please note the different ordinate scaling of the three diagrams in the graph.

  • The bit rate is  $R = 30 \ \rm Mbit/s$   ⇒   symbol duration  $T ≈ 33\ \rm ns$.
  • We assume the quantities given in the yellow box, calculated on the last page.
  • For this purpose, the  $b_2$ value is changed from  $8.75 \ \rm rad$  to  $6.55 \ \rm rad$  to match the  ${\rm a}_2$ value.
  • The effects of this measure are interpreted on the next page.
For calculating the impulse response of a two-wire line


On the top right  $h_1(t) = h_{\rm α1}(t + τ_{\rm P})$  is shown. This component is due to the  $α_1$  and  $β_1$  coefficients. $h_1(t)$  is a symmetric function with respect to the phase delay time  $τ_{\rm P}$  with the maximum value  $(1.5T)^{–1}$, where the  $1/(1 + t^2$) decrease is rapidly decreased at  $ \pm 5T$  $($right and left of  $τ_{\rm P})$.

The lower left diagram shows the signal component  $h_2(t)$, due to the two coefficients  $α_2$  and  $β_2$ . $h_2(t)$  is identical to the  coaxial cable impulse response  (ignoring delay time) when the characteristic cable attenuation is  $6.55 \ \rm Np$  or  $56.9 \ \rm dB$ .

The red curve represents the convolution product  $h_1(t) ∗ h_2(t)$ . It can be seen that the waveform is essentially fixed by  $h_2(t)$ . However, convolution with  $h_1(t)$  leads to a (slight) distortion of the waveform in addition to an amplitude loss of about  $10\%$ .

The resulting impulse response of the  $\text{0.4mm}$ two-wire line is shown as a blue curve in the lower right diagram. The difference to the convolution product  $h_1(t) ∗ h_2(t)$  drawn in red results from the influence of the DC signal attenuation $($coefficient  $α_0)$.


You can illustrate the presented method for arbitrary parameters (diameter, length, bit rate) with the (German language) interactive SWF applet  Zeitverhalten von Kupferkabeln  ⇒   "Time behavior of copper cables". 


Discussion of the approximate solution found


$\text{Example 4:}$  The following graph shows the (normalized) impulse responses  $T · h_{\rm K}(t)$  for two exemplary copper cables, namely

Impulse response approximations of normal coaxial cable (top) and  $\text{0.4 mm}$  two-wire cable (bottom)
  • for the  $\text{standard coaxial cable 2.6/9.5 mm}$  at  $\text{10.1 km}$  length (above), where:
$$a_0 = 0.016\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.020\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 350\hspace{0.05cm}, \hspace{0.15cm} b_2 = 6.177\,{\rm rad}\hspace{0.05cm};$$
  • for the $\text{0.4 mm two-wire line}$ with the length $\text{1.8 km}$ (below) with the parameters
$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm} b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$

These values are valid for bit rate  $R = 10 \ \rm Mbit/s$   ⇒   time normalization  $T = 0.1 \ \rm µ s$.

  • The two cable lengths were chosen to give exactly equal  $a_2$ parameters.
  • For the two-wire cable, the phase value  $b_2 ⇒ b_2\hspace{0.01cm}'$  was adjusted to give equal numerical values for  $b_2\hspace{0.05cm}' = 6.177 \ \rm rad$  and  $a_2 = 6.177 \ \rm Np \ (≈ 53 \ dB)$  as for the coaxial cable.


The blue curves show the approximations when the  $a_0,  a_1$ and  $b_1$ terms are neglected.  Due to the  $b_2 ⇒ b_2\hspace{0.01cm}'$  phase matching for the two-wire line, the curves are the same.  The maximum of about  $3.8\%$  is at about  $t/T = 4$  (different time scales in both diagrams!).

The red curves also take into account the  $a_0,  a_1$ and  $b_1 $terms.  The red curve of the coaxial cable is the actual (normalized) impulse response  $T · h_{\rm K}(t)$.


From these representations, one can further see:

  • For the coaxial cable, the  $a_0$ term and the  $a_1 $term can be neglected.  The resulting relative error is only  $3.5\%$.
  • However, the phase delay time  $τ_{\rm P}$, i.e. the  $b_1$ term, cannot be neglected.  For the coaxial cable this gives  $τ_{\rm P}/T ≈ 350$, while for the two-wire line it is  $τ_{\rm P}/T ≈ 94$   (note the different time scales).
  • For the two-wire line (below), do not neglect DC signal attenuation  $(a_0)$  and transverse loss  $(a_1)$ :  
    The red approximation  $T · h_{\rm K}\hspace{0.01cm}'(t)$  is  $70\%$  lower than the blue one and also slightly wider.


$\text{Example 5:}$  This example shows approximations of the impulse response of a two-wire line  $($length $\text{1.8 km}$, diameter $\text{0.4 mm)}$, so that according to  [PW95][1]  the following parameters can be assumed:

For the impulse response of a  $\text{0.4 mm}$  two-wire cable
$$a_0 = 1.057\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_1 = 0.147\,{\rm Np}\hspace{0.05cm}, \hspace{0.15cm} a_2 = 6.177\,{\rm Np}\hspace{0.05cm}, $$
$$\tau_{ {\rm P} }/T = 94\hspace{0.05cm}, \hspace{0.15cm} b_2 = 8.260\,{\rm rad}\hspace{0.05cm}.$$

The upper diagram – equal to the lower diagram in  $\text{Example 4}$ – shows two approximations

  • with neglection of the  $a_0, \ a_1$  and  $b_1$ terms (blue curve),
  • with consideration of the  $a_0, \ a_1$  and  $b_1$ terms (red curve).


For this upper diagram, we further adopted the  $a_2$ coefficient given in [PW95][1] and lowered the mentioned coefficient  $b_2 = 8.260 \ \rm rad$  to  $b_2\hspace{0.01cm}' = 6.177 \ \rm rad$ .

Note:   In contrast to the coaxial cable in  $\text{Example 3}$,  because of  $b_2\hspace{0.01cm}' ≠ b_2$  the red curve  $T · h_{\rm K}\hspace{0.01cm}'(t)$  is also only an approximation, which is indicated in the graphic by the apostrophe.
Without the correction  $b_2\hspace{0.01cm}' = a_2 · \text{rad/Np}$,  the  Hilbert Transformation, which establishes the relationship between magnitude and phase in real and thus establishes  minimum-phase systems,  would not be satisfied. Therefore, it would result in an acausal impulse response.

We therefore believe that even for a two-wire line, the two parameters  $a_2$  and  $b_2$  should have equal numerical values.

We now consider a second approach, shown in the diagram below:

  • Here, the phase coefficient  $b_2 = 8.260 \ \rm rad$  given in  [PW95][1]  was kept.
  • Instead, the attenuation coefficient  $a_2 = 6.177 \ \rm Np$  was adjusted to the phase coefficient (i.e., enlarged):   $a_2\hspace{0.01cm}' = 8.260 \ \rm Np$.
  • The lower (red) impulse response   ⇒   (worst case)  is less than half as high and much wider than the upper impulse response   ⇒   (Best Case).
  • The actual (normalized) impulse response  $T \cdot h_{\rm K}\hspace{0.01cm}'(t)$  will probably lie in between. We do not allow ourselves to make more precise statements.

Interferences on two-wire lines


For transmission systems over two-wire lines, the same  block diagram  can be assumed as for the coaxial cable systems, where now

  • for the frequency response  $H_{\rm K}(f)$  and the impulse response  $h_{\rm K}(t)$  the equations given in this section are to be used,
  • white noise  $N_0$  is no longer the dominant cause of interference, but  crosstalk  due to capacitive or inductive coupling of adjacent pairs now predominates as a stochastic interference.


By twisting the twisted pairs of a star quad as well as the basic and main bundles according to the diagram at the end of the chapter  Access network of a telecommunications system  an attempt is made to achieve as symmetrical a mutual coupling as possible between all pairs of cores on average. Due to unavoidable manufacturing tolerances, however, a slight asymmetry always remains. This causes

  • in addition to its "own" useful signal, each receiver input also receives (usually only small) signal components from neighboring pairs of cores,
  • the induced signal components represent an additional stochastic interference for the useful signal, which together with the thermal noise results in the resulting interference signal  $n(t)$ ,
  • the transmission quality cannot be improved or can only be improved to a very limited extent by increasing the transmitting power, since this measure also increases the crosstalk interference.


To clarify near-end crosstalk (NEXT) and far-end crosstalk (FEXT)

As the diagram illustrates, a distinction is made between

  • Near-End Crosstalk  (NEXT):
    The interfering transmitter feeds its signal at the same end of the cable where the receiver under consideration is placed.


  • Far–End–Crosstalk  (FEXT):
    The interfering transmitter and the interfering receiver are located at opposite ends of the cable.


In the case of FEXT, the interference accumulates over the entire cable length, but is also greatly attenuated by the cable attenuation. For bundled cables in the local loop area, "in quad crosstalk" thus results in orders of magnitude greater interference than long-distance crosstalk, and even near-end crosstalk interference from adjacent cores can usually be neglected.

$\text{Without derivation:}$  We therefore consider only  $\text{Near-End Crosstalk (NEXT)}$ in the following.  In this case, the  power density spectrum  (PDS) of the interference signal  $n(t)$  can be represented as follows, taking into account the unavoidable thermal noise  $(N_0/2)$ :

$${\it \Phi}_n(f) = {N_0}/{2}+{\it \Phi}_{\rm NEXT}(f) \hspace{0.05cm},\hspace{0.3cm}{\rm mit} \hspace{0.3cm}{\it \Phi}_{\rm NEXT}(f) = {\it \Phi}_{s}(f) \cdot\vert H_{\rm NEXT}(f)\vert ^2 \approx {\it \Phi}_{s}(f) \cdot [K_{\rm NEXT} \cdot f]^{3/2}\hspace{0.05cm}.$$


It should be noted about this equation:

  • The equation is obtained by integrating the local couplings over the entire length of a short section, where the couplings between all copper lines are modeled by cross capacitances and inductances.
  • ${\it \Phi}_s(f)$  is the PDS of the interfering transmitter, from which the transmit power  $P_{\rm S}$  is obtained by integration.  Assuming that the interfered transmission uses the same transmit signal and thus the same PDS  ${\it \Phi}_s(f)$  as the interferer, it is clear that increasing  $P_{\rm S}$  only reduces the (relative) influence of thermal noise  $(N_0/2)$ .
  • The factor  $K_{\rm NEXT}$  quantifying the near-end crosstalk depends strongly on the core spacing, as well as on the degree of unbalance along the cable.  In contrast, this factor  $K_{\rm NEXT}$  is almost independent of the conductor diameter  $d$  and the cable length  $l$.
  • The product  $K_{\rm NEXT} · f$  (dimensionless) is always much smaller than $1$ over the entire operating range of the cable, for example, for all frequencies  $0 ≤ f ≤ 30 \ \rm MHz$.  The crosstalk interference increases sharply $($that is, with exponent $1.5)$ with frequency.
  • In  [PW95][1]  , the following values are given after a series of measurements over forty pairs for the frequency  $f = 10 \ \rm MHz$   $($for  $f = 30 \ \rm MHz$  these values must still be multiplied by  $3^{3/2} ≈ 5.2$ $)$:
  • worst case:   $|H_{\rm NEXT}(f = 10 \ \rm MHz)|^2 ≈ 0.001$,
  • Averaging over 40 cores:   $|H_{\rm NEXT}(f = \ \rm 10 MHz)|^2 ≈ 0.0004$.
  • The values apply to in-four near-end crosstalk  (interfering transmitter and interfering receiver in the same star quad).
  • Near-end crosstalk interference between more distant cores exhibits the same frequency dependence, but is smaller than in-four near-end crosstalk:
  • Near-end crosstalk between adjacent star quads by about  $5 \ \rm dB$,
  • Near-end crosstalk between adjacent ground bundles by about  $10 \ \rm dB$,
  • Near-end crosstalk between non-adjacent ground bundles by about  $25 \ \rm dB$.

$\text{Conclusion:}$ 

  • In order to avoid or at least reduce such near-end crosstalk interference, adjacent pairs of wires are often occupied by completely different signals  (analog telephony, ISDN, DSL or other broadband services)  which also use different frequency bands if possible.
  • By clever selection of the twisted pairs, adjacent cores can now be occupied with signals whose spectra overlap as little as possible, thus reducing crosstalk interference.

Exercises for the chapter

Exercise 4.6: $k$-Parameters and $\alpha$-Parameters

Exercise 4.6Z: ISDN Supply Lines

Exercise 4.7: Copper Twin Wire 0.5 mm

Exercise 4.8: Near-end and Far-end Crosstalk Disorders


List of sources

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.