Difference between revisions of "Linear and Time Invariant Systems/System Description in Time Domain"

From LNTwww
(Undo revision 37680 by Oezer (talk))
Tag: Undo
Line 6: Line 6:
 
}}
 
}}
  
Auf der Seite  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Das erste Fourierintegral]]  im Buch „Signaldarstellung” wurde dargelegt, dass für jedes deterministische Signal  $x(t)$  mit Hilfe der Fouriertransformation eine Spektralfunktion  $X(f)$  angegeben werden kann. Oft bezeichnet man  $X(f)$  kurz als das Spektrum.  
+
==Impulse Response==
 +
<br>
 +
On the page&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_First_FourierIntegral|The First Fourier Integral]]&nbsp; in the book &bdquo;Signal Representation&rdquo; it was explained that for any deterministic signal&nbsp; $x(t)$&nbsp; a spectral function&nbsp; $X(f)$&nbsp; can be given with the help of the Fourier transform. Often one&nbsp; $X(f)$&nbsp; refers to it as the spectrum for short.  
  
Alle Informationen über die Spektralfunktion sind aber auch bereits in der Zeitbereichsdarstellung enthalten, wenn auch nicht immer sofort erkennbar. Der gleiche Sachverhalt trifft für lineare zeitinvariante Systeme zu.  
+
However, all information about the spectral function is already contained in the time domain representation, even if not always immediately recognisable. The same facts apply to linear time-invariant systems.  
  
{{BlaueBox|TEXT=   
+
{{BlueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Die wichtigste Beschreibungsgröße eines linearen zeitinvarianten Systems im Zeitbereich ist die Fourierrücktransformierte von&nbsp; $H(f)$, die man als die&nbsp; '''Impulsantwort'''&nbsp; bezeichnet:
+
The most important descriptive quantity of a linear time-invariant system in the time domain is the Fourier retransform of&nbsp; $H(f)$, which is called the&nbsp; '''impulse response''''&nbsp; :
 
:$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$}}
 
:$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$}}
  
  
Hierzu ist Folgendes anzumerken:  
+
The following should be noted in this regard:  
*Der Frequenzgang&nbsp; $H(f)$&nbsp; und die Impulsantwort&nbsp; $h(t)$&nbsp; sind äquivalente Beschreibungsgrößen, die genau die gleichen Informationen über das LZI–System beinhalten.  
+
*The frequency response&nbsp; $H(f)$&nbsp; and the impulse response&nbsp; $h(t)$&nbsp; are equivalent descriptive quantities that contain exactly the same information about the LZI system.  
*Verwendet man das diracförmige Eingangssignal&nbsp; $x(t) = δ(t)$, so ist&nbsp; $X(f) = 1$&nbsp; zu setzen und es gilt&nbsp; $Y(f) = H(f)$&nbsp; bzw.&nbsp; $y(t) = h(t)$.  
+
*If one uses the dirac-shaped input signal&nbsp; $x(t) = δ(t)$, then&nbsp; $X(f) = 1$&nbsp; is to be set and&nbsp; $Y(f) = H(f)$&nbsp; respectively&nbsp; $y(t) = h(t)$ is valid.  
*Die Bezeichnung &bdquo;Impulsantwort&rdquo; spiegelt diese Aussage wieder: &nbsp; $h(t)$&nbsp; ist die Antwort des Systems auf einen (Dirac-)Impuls am Eingang.  
+
*The term &bdquo;impulse response&rdquo; reflects this statement: &nbsp; $h(t)$&nbsp; is the response of the system to a (Dirac) impulse at the input.  
*Die obige Definition lässt erkennen, dass jede Impulsantwort die Einheit&nbsp; $\text{Hz = 1/s}$&nbsp; besitzen muss.  
+
*The above definition suggests that any impulse response must have the unit&nbsp; $\text{Hz = 1/s}$&nbsp;.  
 +
 
  
 +
[[File:P_ID837__LZI_T_1_2_S1_new.png|right|frame|Rectangular impulse response and associated magnitude spectrum|class=fit]]
 +
{{GreyBox|TEXT=. 
 +
$\text{Example 1:}$&nbsp;
 +
The impulse response&nbsp; $h(t)$&nbsp; of the so-called ''slit low-pass''&nbsp; is constant over a time interval&nbsp; $T$&nbsp; and is zero outside this time interval.
 +
*The associated amplitude response as the magnitude of the frequency response is&nbsp;
 +
:$$\vert H(f)\vert = \vert {\rm si}(\pi fT)\vert .$$
 +
*The area over&nbsp; $h(t)$&nbsp; is equal to&nbsp; $H(f = 0) = 1$. It follows that: &nbsp; <br>&nbsp; &nbsp; In the range&nbsp; $ 0 < t < T$&nbsp; the impulse response must be equal&nbsp; $1/T$&nbsp; .
 +
*The phase response is given by
 +
:$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T \ - \pi/T \end{array} \right.\quad \quad\begin{array}{*{20}c}  \text{for} \text{for}  \end{array}\begin{array}{*{20}c}{\left \vert \hspace{0.05cm} f\hspace{0.05cm} \right \vert{ 0.}  \vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0,}  \hspace{0.05cm} \hspace{0.05cm} \vert < 0.}
 +
*If symmetric&nbsp; $h(t)$&nbsp; um&nbsp; $t = 0$&nbsp; (i.e. acausal) would&nbsp; $b(f)=0$. }}
  
[[Datei:P_ID837__LZI_T_1_2_S1_neu.png|right|frame|Rechteckförmige Impulsantwort und zugehöriges Betragsspektrum|class=fit]]
 
{{GraueBox|TEXT= 
 
$\text{Beispiel 1:}$&nbsp;
 
Die Impulsantwort&nbsp; $h(t)$&nbsp; des so genannten ''Spalt–Tiefpasses''&nbsp; ist über eine Zeitdauer&nbsp; $T$&nbsp; hinweg konstant und außerhalb dieses Zeitintervalls gleich Null.
 
*Der dazugehörige Amplitudengang als der Betrag des Frequenzgangs ist&nbsp;
 
:$$\vert H(f)\vert  = \vert {\rm si}(\pi fT)\vert .$$
 
*Die Fläche über&nbsp; $h(t)$&nbsp; ist gleich&nbsp; $H(f = 0) = 1$. Daraus folgt: &nbsp; <br>&nbsp; &nbsp; Im Bereich&nbsp; $ 0 < t < T$&nbsp; muss die Impulsantwort gleich&nbsp; $1/T$&nbsp; sein.
 
*Der Phasenverlauf ergibt sich  zu
 
:$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T  \\  - \pi/T \\  \end{array} \right.\quad \quad\begin{array}{*{20}c}  \text{für} \\  \text{für}  \\ \end{array}\begin{array}{*{20}c}{\left \vert  \hspace{0.05cm} f\hspace{0.05cm} \right \vert  > 0,}  \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.}  \\\end{array}$$
 
*Bei symmetrischem&nbsp; $h(t)$&nbsp; um&nbsp; $t = 0$&nbsp; (also akausal) wäre&nbsp; $b(f)=0$. }}
 
  
==Einige Gesetze der Fouriertransformation==
+
==Some laws of the Fourier transform==
 
<br>
 
<br>
Die&nbsp; [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; wurden bereits im Buch &bdquo;Signaldarstellung&rdquo; ausführlich dargelegt.  
+
The&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Laws of the Fourier Transform]]&nbsp; have already been explained in detail in the book &bdquo;Signal Representation&rdquo;.  
  
Hier folgt nun eine kurze Zusammenfassung, wobei&nbsp; $H(f)$&nbsp; den Frequenzgang eines LZI–Systems beschreibt und dessen Fourierrücktransformierte&nbsp; $h(t)$&nbsp; die Impulsantwort ist. Diese Gesetzmäßigkeiten werden in den&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Aufgaben_zum_Kapitel|Aufgaben]]&nbsp; zu diesem Kapitel &bdquo;Systemtheoretische Grundlagen&rdquo; häufiger angewendet.  
+
Here now follows a short summary, where&nbsp; $H(f)$&nbsp; describes the frequency response of an LZI system and whose Fourier retransform&nbsp; $h(t)$&nbsp; is the impulse response. These laws are applied more frequently in the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_the_Time_Domain#Tasks_to_Chapter|Tasks]]&nbsp; to this chapter &bdquo;System-Theoretical Basics&rdquo;.  
  
Wir verweisen hier auch auf das Lernvideo&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]].
+
We also refer here to the learning video&nbsp; [[Laws_of_the_Fourier_transform_(learning video)|Laws of the Fourier transform]].
  
Bei den folgenden Gleichungen wird das Kurzsymbol der Fouriertransformation benutzt. Der ausgefüllte Kreis kennzeichnet den Spektralbereich, der weiße den Zeitbereich.
+
In the following equations the short symbol of the Fourier transform is used. The filled circle indicates the spectral domain, the white one the time domain.
*'''Multiplikation'''&nbsp; mit einem konstanten Faktor:
+
*'''Multiplication'''&nbsp; with a constant factor:
:$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
+
:$$k \cdot H(f)\bullet\!\!\!\!\!\!\!\circ\,k \cdot h(t).$$
:Bei&nbsp; $k \lt 1$&nbsp; spricht man von einer Dämpfung, während&nbsp; $k \gt 1$&nbsp; für eine Verstärkung steht.
+
:At&nbsp; $k \lt 1$&nbsp; one speaks of attenuation, while&nbsp; $k \gt 1$&nbsp; stands for amplification.
  
  
*'''Ähnlichkeitssatz''':
+
*''Similarity theorem'':
:$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
+
:$$H({f}/{k})\bullet\!\!-\!\!-\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
:#&nbsp; Dieser besagt: &nbsp; Eine Stauchung&nbsp; $(k < 1)$&nbsp; des Frequenzgangs führt zu einer breiteren und niedrigeren Impulsantwort.  
+
:#&nbsp; This states: &nbsp; A compression&nbsp; $(k < 1)$&nbsp; of the frequency response leads to a broader and lower impulse response.  
:#&nbsp; Durch Streckung&nbsp; $(k > 1)$&nbsp; von&nbsp; $H(f)$&nbsp; wird&nbsp; $h(t)$&nbsp; schmaler und höher.
+
:#&nbsp; Stretching&nbsp; $(k > 1)$&nbsp; of&nbsp; $H(f)$&nbsp; makes&nbsp; $h(t)$&nbsp; narrower and higher.
  
  
*'''Verschiebungssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
+
*'''Displacement theorem'''&nbsp; in the frequency domain and in the time domain:
:$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm}
+
:$$H(f - f_0) \bullet\!\!\!\!\!\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm}
H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
+
H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!-\!\!-\!\!\circ\, h( t- t_0 ).$$
:#&nbsp; Eine Verschiebung um&nbsp; $t_0$&nbsp; (Laufzeit) führt also im Frequenzbereich zu der Multiplikation mit einer komplexen Exponentialfunktion.  
+
:#&nbsp; A shift by&nbsp; $t_0$&nbsp; (transit time) thus leads in the frequency domain to the multiplication by a complex exponential function.  
:#&nbsp; Der Amplitudengang&nbsp; $|H(f)|$&nbsp; wird dadurch nicht verändert.
+
:#&nbsp; The amplitude response&nbsp; $|H(f)|$&nbsp; is not changed by this.
  
  
*'''Differentiationssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
+
*''Differentiation theorem'''&nbsp; in the frequency domain and in the time domain:
:$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm}
+
:$$\frac{1}{{\rm j}2\pi }} \cdot \frac{{\rm d}H( f )}}{{\rm d}f}} \bullet\!\!\!\!\!\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm}
{\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
+
{\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!\!-\!\!\!-\!\!-\!\circ\, \frac{{\rm d}h( t )}}{\rm d}t}.$$
:Ein differenzierendes Element im LZI–System führt im Frequenzbereich zu einer Multiplikation mit&nbsp; ${\rm j}\cdot 2πf$&nbsp; und damit unter Anderem zu einer Phasendrehung um&nbsp; $90^{\circ}$.
+
:A differentiating element in the LZI system leads in the frequency domain to a multiplication by&nbsp; ${\rm j}\cdot 2πf$&nbsp; and thus among other things to a phase rotation by&nbsp; $90^{\circ}$.
  
  
==Kausale Systeme==
+
==Causal systems==
 
<br>
 
<br>
{{BlaueBox|TEXT=   
+
{{BlueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Ein LZI–System bezeichnet man dann als&nbsp; '''kausal''', wenn die Impulsantwort&nbsp; $h(t)$&nbsp; – also die Fourierrücktransformierte des Frequenzgangs&nbsp; $H(f)$&nbsp; – folgende Bedingung erfüllt:  
+
An LZI system is said to be&nbsp; '''causal'''' if the impulse response&nbsp; $h(t)$&nbsp; - that is, the Fourier retransform of the frequency response&nbsp; $H(f)$&nbsp; - satisfies the following condition:  
 
:$$h(t) = 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$
 
:$$h(t) = 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$
$\text{Bitte beachten Sie:}$&nbsp; Jedes realisierbare System ist kausal. }}
+
$\text{Please note:}$&nbsp; Any realisable system is causal. }}
  
  
[[Datei:P_ID806__LZI_T_1_2_S3_neu.png|right|frame|Akausales System&nbsp; $\rm A$&nbsp; und kausales System&nbsp; $\rm B$|class=fit]]
+
[[File:P_ID806__LZI_T_1_2_S3_new.png|right|frame|Acausal system&nbsp; $\rm A$&nbsp; and causal system&nbsp; $\rm B$|class=fit]]
{{GraueBox|TEXT=   
+
{{GreyBox|TEXT=.  
$\text{Beispiel 2:}$&nbsp;  
+
$\text{example 2:}$&nbsp;  
Die Grafik verdeutlicht den Unterschied zwischen dem akausalen System&nbsp; $\rm A$&nbsp; und dem kausalen System&nbsp; $\rm B$.
+
The diagram illustrates the difference between the acausal system&nbsp; $\rm A$&nbsp; and the causal system&nbsp; $\rm B$.
*Beim System&nbsp; $\rm A$&nbsp; beginnt die Wirkung früher&nbsp; $($bei &nbsp; $t =\hspace{0.05cm} –T)$&nbsp; als die Ursache&nbsp; $($Diracfunktion bei &nbsp; $t = 0)$, was natürlich in der Praxis nicht möglich ist.  
+
*In the system&nbsp; $\rm A$&nbsp; the effect starts earlier&nbsp; $($at &nbsp; $t =\hspace{0.05cm} -T)$&nbsp; than the cause&nbsp; $($Dirac function at &nbsp; $t = 0)$, which of course is not possible in practice.  
*Fast alle akausalen Systeme lassen sich unter Verwendung einer Laufzeit&nbsp; $\tau$&nbsp; in ein realisierbares kausales System überführen.  
+
*Almost all acausal systems can be transformed into a feasible causal system using a runtime&nbsp; $\tau$&nbsp;.  
*Zum Beispiel gilt mit&nbsp; $\tau = T$:  
+
*For example, with&nbsp; $\tau = T$:  
:$$h_{\rm B}(t) = h_{\rm A}(t - T).$$}}
+
:$$h_{\rm B}(t) = h_{\rm A}(t - T).$$}
  
  
*Für kausale Systeme gelten alle bisher gemachten Aussagen ebenso wie für akausale Systeme.  
+
*For causal systems, all the statements made so far apply in the same way as for acausal systems.  
*Zur Beschreibung kausaler Systeme lassen sich jedoch einige spezifische Eigenschaften nutzen, wie im dritten Hauptkapitel &bdquo;Beschreibung kausaler realisierbarer Systeme&rdquo;&nbsp; [[Lineare_zeitinvariante_Systeme|dieses Buches]]&nbsp; ausgeführt wird.
+
*For the description of causal systems, however, some specific properties can be used, as will be explained in the third main chapter &bdquo;Description of Causal Realisable Systems&rdquo;&nbsp; [[Linear_Time_invariant_Systems|of this book]]&nbsp;.
  
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
In diesem ersten und dem folgenden zweiten Hauptkapitel betrachten wir vorwiegend akausale Systeme, da deren mathematische Beschreibung meist einfacher ist.  
+
In this first and the following second main chapter we mainly consider acausal systems, since their mathematical description is usually simpler.  
*So ist der Frequenzgang&nbsp; $H_{\rm A}(f)$&nbsp; reell,  
+
*So the frequency response&nbsp; $H_{\rm A}(f)$&nbsp; is real,  
*während für&nbsp; $H_{\rm B}(f)$&nbsp; der zusätzliche Term&nbsp; ${\rm e}^{{\rm j2π}f\hspace{0.05cm}T}$&nbsp; zu berücksichtigen ist. }}
+
*while for&nbsp; $H_{\rm B}(f)$&nbsp; the additional term&nbsp; ${\rm e}^{-{\rm j2π}f\hspace{0.05cm}T}$&nbsp; has to be considered. }}
  
  
  
==Berechnung des Ausgangssignals==
+
==Calculation of the output signal==
 
<br>
 
<br>
Wir betrachten die folgende Aufgabenstellung: &nbsp; Bekannt sei das Eingangssignal&nbsp; $x(t)$&nbsp; und der Frequenzgang&nbsp; $H(f)$. Gesucht ist das Ausgangssignal&nbsp; $y(t)$.  
+
We consider the following problem: &nbsp; Let the input signal&nbsp; $x(t)$&nbsp; and the frequency response&nbsp; $H(f)$ be known. We are looking for the output signal&nbsp; $y(t)$.  
  
[[Datei:P_ID809__LZI_T_1_2_S4_neu.png|right|frame|Zur Ermittlung der Ausgangsgrößen eines LZI–Systems|class=fit]]
+
[[File:EN_LZI_T_1_2_S4.png|right|frame|To determine the output quantities of an LZI system|class=fit]]
  
Soll die Lösung im Frequenzbereich erfolgen, so muss zunächst aus dem gegebenen Eingangssignal&nbsp; $x(t)$&nbsp; durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp; das Spektrum $X(f)$ ermittelt und mit dem Frequenzgang&nbsp; $H(f)$&nbsp; multipliziert werden. Durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]] des Produkts kommt man dann zum Signal&nbsp; $y(t)$.
+
If the solution is to be in the frequency domain, the spectrum $X(f)$ must first be determined from the given input signal&nbsp; $x(t)$&nbsp; by&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_First_FourierIntegral|Fourier Transform]]&nbsp; and multiplied by the frequency response&nbsp; $H(f)$&nbsp; . By&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_second_Fourier_integral|Fourier_back_transform]] of the product one then arrives at the signal&nbsp; $y(t)$.
  
Hier nochmals der gesamte Rechengang zusammengefasst:  
+
Here is a summary of the entire calculation process:  
:$${\rm 1.\,\, Schritt\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm Eingangsspektrum},$$
+
:$${\rm 1.\,\, step\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm input spectrum},$$
:$${\rm 2.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm Ausgangsspektrum},$$
+
:$${\rm 2.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm output spectrum},$$
:$${\rm 3.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm Ausgangssignal}.$$
+
:$${\rm 3.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm output signal}.$$
  
  
Zum gleichen Ergebnis kommt man nach der Berechnung im Zeitbereich, indem man zunächst aus dem Frequenzgang&nbsp; $H(f)$&nbsp; mittels Fourierrücktransformation die Impulsantwort&nbsp; $h(t)$&nbsp; berechnet und anschließend die Faltungsoperation anwendet:
+
The same result is obtained after the calculation in the time domain by first calculating the impulse response&nbsp; $h(t)$&nbsp; from the frequency response&nbsp; $H(f)$&nbsp; by means of Fourier back transformation and then applying the convolution operation:
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
+
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Die Ergebnisse sind bei beiden Vorgehensweisen identisch.  
+
*The results are identical for both approaches.  
*Zweckmäßigerweise sollte man dasjenige Verfahren auswählen, das mit weniger Rechenaufwand zum Ziel führt.
+
*Purposefully, one should choose the procedure that leads to the goal with less computational effort.
  
  
{{GraueBox|TEXT=   
+
{{GreyBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
Am Eingang eines Spalt–Tiefpasses mit rechteckförmiger Impulsantwort der Breite&nbsp; $T$&nbsp; (siehe [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|$\text{Beispiel 1}$]])&nbsp; liegt ein Rechteckimpuls&nbsp; $x(t)$&nbsp; der Dauer&nbsp; $2T$&nbsp; an.  
+
At the input of a slit lowpass with rectangular impulse response of width&nbsp; $T$&nbsp; (see [[Linear_and_Time_Invariant_Systems/System_Description_in_TimeDomain#ImpulseResponse|$\text{Example 1}$]])&nbsp; a rectangular impulse&nbsp; $x(t)$&nbsp; of duration&nbsp; $2T$&nbsp; is applied.  
[[Datei:P_ID812__LZI_T_1_2_S4b_neu.png|right|frame|Trapezförmiger Ausgangsimpuls, da&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; rechteckförmig sind|class=fit]]
+
[[File:P_ID812__LZI_T_1_2_S4b_new.png|right|frame|Trapezoidal output pulse, since&nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$&nbsp; are rectangular|class=fit]]
  
In diesem Fall ist die direkte Berechnung im Zeitbereich günstiger: &nbsp;  
+
In this case, direct computation in the time domain is more convenient: &nbsp;  
*Die Faltung zweier unterschiedlich breiter Rechtecke&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; führt zum trapezförmigen Ausgangsimpuls&nbsp; $y(t)$.
+
*Folding two rectangles of different widths&nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$&nbsp; leads to the trapezoidal output pulse&nbsp; $y(t)$.
  
*Man erkennt die Tiefpasseigenschaft des Filters an der endlichen Flankensteilheit von&nbsp; $y(t)$.  
+
*The low-pass property of the filter can be seen from the finite slope of&nbsp; $y(t)$.  
  
*Die Impulshöhe&nbsp; $3\text{ V}$&nbsp; bleibt in diesem Beispiel erhalten, wegen&nbsp;  
+
*The pulse height&nbsp; $3\text{ V}$&nbsp; is preserved in this example, because of&nbsp;  
:$$H(f = 0) = 1/T · T = 1.$$ }}
+
:$$H(f = 0) = 1/T - T = 1.$ }}
  
  
==Sprungantwort==
+
==Step response==
 
<br>
 
<br>
{{BlaueBox|TEXT=   
+
{{BlueBox|TEXT=   
$\text{Definitionen:}$&nbsp;  
+
$\text{Definitions:}$&nbsp;  
Eine in der Praxis oft verwendete Eingangsfunktion&nbsp; $x(t)$&nbsp; zur Messung von&nbsp; $H(f)$&nbsp; ist die&nbsp; '''Sprungfunktion'''
+
An input function often used in practice&nbsp; $x(t)$&nbsp; to measure&nbsp; $H(f)$&nbsp; is the&nbsp; '''step response''''
:$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0 \\ 0.5 \\ \hspace{0.25cm} 1 \\end{array} \right.\quad \quad\begin{array}{*{20}c} \text{für\\  \text{für}\\  \text{für\\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,}  \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,}  \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.\\ \end{array}$$
+
:$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0 \\ 0.5 \ \hspace{0.25cm} 1 \ \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{for}  \text{for} \text{for}  \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,}  \vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,}  \vert {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0,}  \ \end{array}$$
  
Die&nbsp; '''Sprungantwort'''&nbsp; $\sigma(t)$&nbsp; ist die Antwort des Systems, wenn man an den Eingang die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; anlegt:  
+
The&nbsp; '''step response'''&nbsp; $\sigma(t)$&nbsp; is the response of the system when the step function&nbsp; $\gamma(t)$&nbsp; is applied to the input:  
:$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t) = {\rm \sigma}(t).$$}}
+
:$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t) = {\rm \sigma}(t).$$}
  
  
Die Berechnung im Frequenzbereich wäre hier etwas umständlich, denn man müsste dann folgende Gleichung anwenden:  
+
The calculation in the frequency domain would be a bit awkward here, because one would then have to apply the following equation:  
:$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
+
:$${\rm \sigma}(t)\circ\!\!\!\!\!\!\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
  
Die Berechnung im Zeitbereich führt dagegen direkt zum Ergebnis:
+
The calculation in the time domain, on the other hand, leads directly to the result:
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
+
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
  
Bei kausalen Systemen gilt&nbsp; $h(\tau) = 0$&nbsp; für&nbsp; $\tau \lt 0$, so dass die untere Integrationsgrenze in obiger Gleichung zu&nbsp; $\tau = 0$&nbsp; gesetzt werden kann.  
+
For causal systems&nbsp; $h(\tau) = 0$&nbsp; holds for&nbsp; $\tau \lt 0$, so the lower limit of integration in the above equation can be set to&nbsp; $\tau = 0$&nbsp; .  
  
{{BlaueBox|TEXT=   
+
{{BlueBox|TEXT=   
$\text{Beweis:}$&nbsp;  
+
$\text{Proof:}$&nbsp;  
Das genannte Ergebnis ist auch aus folgendem Grunde einsichtig:  
+
The above result is also insightful for the following reason:  
*Die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; hängt mit der Diracfunktion&nbsp; $\delta(t)$&nbsp; wie folgt zusammen:  
+
*The jump function&nbsp; $\gamma(t)$&nbsp; is related to the Dirac function&nbsp; $\delta(t)$&nbsp; as follows:  
:$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
+
:$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
*Da wir Linearität vorausgesetzt haben und die Integration eine lineare Operation darstellt, gilt auch für das Ausgangssignal der entsprechende Zusammenhang:  
+
*Since we have assumed linearity and integration is a linear operation, the corresponding relationship also applies to the output signal:  
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
+
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
 
<div align="right">q.e.d.</div>}}  
 
<div align="right">q.e.d.</div>}}  
  
  
[[Datei:P_ID839__LZI_T_1_2_S5_neu.png|right|frame|Berechnung der Sprungantwort bei rechteckförmiger Impulsantwort|class=fit]]
+
[[File:EN_LZI_T_1_2_S5.png|right|frame|calculation of step response for rectangular impulse response|class=fit]]
{{GraueBox|TEXT=   
+
{{GreyBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;  
+
$\text{Example 4:}$&nbsp;  
Die Grafik verdeutlicht den Sachverhalt für die Rechteck&ndash;Impulsantwort&nbsp; $h(\tau)$.
+
The graph illustrates the situation for the rectangular&ndash;impulse response&nbsp; $h(\tau)$.
* Die Abszisse wurde in&nbsp; $\tau$&nbsp; umbenannt.  
+
*The abscissa has been renamed to&nbsp; $\tau$&nbsp;.  
*Blau eingezeichnet ist die Sprungfunktion&nbsp; $\gamma(\tau)$.
+
*Drawn in blue is the step function&nbsp; $\gamma(\tau)$.
*Durch Spiegelung und Verschiebung erhält man&nbsp; $\gamma(t - \tau)$ &nbsp; &rArr; &nbsp; violett gestrichelte Kurve.  
+
*By mirroring and shifting one obtains&nbsp; $\gamma(t - \tau)$ &nbsp; &rArr; &nbsp; violet dashed curve.  
*Die rot hinterlegte Fläche gibt somit die Sprungantwort&nbsp; $\sigma(\tau)$&nbsp; zum Zeitpunkt&nbsp; $\tau = t$&nbsp; an.}}
+
*The red shaded area thus gives the step response&nbsp; $\sigma(\tau)$&nbsp; at time&nbsp; $\tau = t$&nbsp; }}
  
  

Revision as of 01:57, 19 April 2021

Impulse Response


On the page  The First Fourier Integral  in the book „Signal Representation” it was explained that for any deterministic signal  $x(t)$  a spectral function  $X(f)$  can be given with the help of the Fourier transform. Often one  $X(f)$  refers to it as the spectrum for short.

However, all information about the spectral function is already contained in the time domain representation, even if not always immediately recognisable. The same facts apply to linear time-invariant systems.

$\text{Definition:}$  The most important descriptive quantity of a linear time-invariant system in the time domain is the Fourier retransform of  $H(f)$, which is called the  impulse response'  :

$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$


The following should be noted in this regard:

  • The frequency response  $H(f)$  and the impulse response  $h(t)$  are equivalent descriptive quantities that contain exactly the same information about the LZI system.
  • If one uses the dirac-shaped input signal  $x(t) = δ(t)$, then  $X(f) = 1$  is to be set and  $Y(f) = H(f)$  respectively  $y(t) = h(t)$ is valid.
  • The term „impulse response” reflects this statement:   $h(t)$  is the response of the system to a (Dirac) impulse at the input.
  • The above definition suggests that any impulse response must have the unit  $\text{Hz = 1/s}$ .


File:P ID837 LZI T 1 2 S1 new.png
Rectangular impulse response and associated magnitude spectrum

. $\text{Example 1:}$  The impulse response  $h(t)$  of the so-called slit low-pass  is constant over a time interval  $T$  and is zero outside this time interval.

  • The associated amplitude response as the magnitude of the frequency response is 
$$\vert H(f)\vert = \vert {\rm si}(\pi fT)\vert .$$
  • The area over  $h(t)$  is equal to  $H(f = 0) = 1$. It follows that:  
        In the range  $ 0 < t < T$  the impulse response must be equal  $1/T$  .
  • The phase response is given by
$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T \ - \pi/T \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{for} \text{for} \end{array}\begin{array}{*{20}c}{\left \vert \hspace{0.05cm} f\hspace{0.05cm} \right \vert{ 0.} \vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0,} \hspace{0.05cm} \hspace{0.05cm} \vert < 0.} *If symmetric  $h(t)$  um  $t = 0$  (i.e. acausal) would  $b(f)=0$. <div style="clear:both;"> </div> </div> =='"`UNIQ--h-1--QINU`"'Some laws of the Fourier transform== <br> The  [[Signal_Representation/Fourier_Transform_Laws|Laws of the Fourier Transform]]  have already been explained in detail in the book „Signal Representation”. Here now follows a short summary, where  $H(f)$  describes the frequency response of an LZI system and whose Fourier retransform  $h(t)$  is the impulse response. These laws are applied more frequently in the  [[Linear_and_Time_Invariant_Systems/System_Description_in_the_Time_Domain#Tasks_to_Chapter|Tasks]]  to this chapter „System-Theoretical Basics”. We also refer here to the learning video  [[Laws_of_the_Fourier_transform_(learning video)|Laws of the Fourier transform]]. In the following equations the short symbol of the Fourier transform is used. The filled circle indicates the spectral domain, the white one the time domain. *'''Multiplication'''  with a constant factor: :$$k \cdot H(f)\bullet\!\!\!\!\!\!\!\circ\,k \cdot h(t).$$ :At  $k \lt 1$  one speaks of attenuation, while  $k \gt 1$  stands for amplification. *''Similarity theorem'': :$$H({f}/{k})\bullet\!\!-\!\!-\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$ :#  This states:   A compression  $(k < 1)$  of the frequency response leads to a broader and lower impulse response. :#  Stretching  $(k > 1)$  of  $H(f)$  makes  $h(t)$  narrower and higher. *'''Displacement theorem'''  in the frequency domain and in the time domain: :$$H(f - f_0) \bullet\!\!\!\!\!\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm}

H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!-\!\!-\!\!\circ\, h( t- t_0 ).$$ :#  A shift by  $t_0$  (transit time) thus leads in the frequency domain to the multiplication by a complex exponential function. :#  The amplitude response  $|H(f)|$  is not changed by this. *''Differentiation theorem'''  in the frequency domain and in the time domain: :$$\frac{1}{{\rm j}2\pi }} \cdot \frac{{\rm d}H( f )}}{{\rm d}f}} \bullet\!\!\!\!\!\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm} {\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!\!-\!\!\!-\!\!-\!\circ\, \frac{{\rm d}h( t )}}{\rm d}t}.$$ :A differentiating element in the LZI system leads in the frequency domain to a multiplication by  ${\rm j}\cdot 2πf$  and thus among other things to a phase rotation by  $90^{\circ}$. =='"`UNIQ--h-2--QINU`"'Causal systems== <br> <div class="bluebox"> $\text{Definition:}$  An LZI system is said to be  '''causal'''' if the impulse response  $h(t)$  - that is, the Fourier retransform of the frequency response  $H(f)$  - satisfies the following condition: :$$h(t) = 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$ $\text{Please note:}$  Any realisable system is causal. <div style="clear:both;"> </div> </div> [[File:P_ID806__LZI_T_1_2_S3_new.png|right|frame|Acausal system  $\rm A$  and causal system  $\rm B$|class=fit]] {{GreyBox|TEXT=. $\text{example 2:}$  The diagram illustrates the difference between the acausal system  $\rm A$  and the causal system  $\rm B$. *In the system  $\rm A$  the effect starts earlier  $($at   $t =\hspace{0.05cm} -T)$  than the cause  $($Dirac function at   $t = 0)$, which of course is not possible in practice. *Almost all acausal systems can be transformed into a feasible causal system using a runtime  $\tau$ . *For example, with  $\tau = T$: :$$h_{\rm B}(t) = h_{\rm A}(t - T).$$} *For causal systems, all the statements made so far apply in the same way as for acausal systems. *For the description of causal systems, however, some specific properties can be used, as will be explained in the third main chapter „Description of Causal Realisable Systems”  [[Linear_Time_invariant_Systems|of this book]] . {{BlueBox|TEXT= In this first and the following second main chapter we mainly consider acausal systems, since their mathematical description is usually simpler. *So the frequency response  $H_{\rm A}(f)$  is real, *while for  $H_{\rm B}(f)$  the additional term  ${\rm e}^{-{\rm j2π}f\hspace{0.05cm}T}$  has to be considered. }} =='"`UNIQ--h-3--QINU`"'Calculation of the output signal== <br> We consider the following problem:   Let the input signal  $x(t)$  and the frequency response  $H(f)$ be known. We are looking for the output signal  $y(t)$. [[File:EN_LZI_T_1_2_S4.png|right|frame|To determine the output quantities of an LZI system|class=fit]] If the solution is to be in the frequency domain, the spectrum $X(f)$ must first be determined from the given input signal  $x(t)$  by  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_First_FourierIntegral|Fourier Transform]]  and multiplied by the frequency response  $H(f)$  . By  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_second_Fourier_integral|Fourier_back_transform]] of the product one then arrives at the signal  $y(t)$. Here is a summary of the entire calculation process: :$${\rm 1.\,\, step\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm input spectrum},$$ :$${\rm 2.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm output spectrum},$$ :$${\rm 3.\,\, step\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm output signal}.$$ The same result is obtained after the calculation in the time domain by first calculating the impulse response  $h(t)$  from the frequency response  $H(f)$  by means of Fourier back transformation and then applying the convolution operation: :$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$ *The results are identical for both approaches. *Purposefully, one should choose the procedure that leads to the goal with less computational effort. <div class="greybox"> $\text{Example 3:}$  At the input of a slit lowpass with rectangular impulse response of width  $T$  (see [[Linear_and_Time_Invariant_Systems/System_Description_in_TimeDomain#ImpulseResponse|$\text{Example 1}$]])  a rectangular impulse  $x(t)$  of duration  $2T$  is applied. [[File:P_ID812__LZI_T_1_2_S4b_new.png|right|frame|Trapezoidal output pulse, since  $x(t)$  and  $h(t)$  are rectangular|class=fit]] In this case, direct computation in the time domain is more convenient:   *Folding two rectangles of different widths  $x(t)$  and  $h(t)$  leads to the trapezoidal output pulse  $y(t)$. *The low-pass property of the filter can be seen from the finite slope of  $y(t)$. *The pulse height  $3\text{ V}$  is preserved in this example, because of  :$$H(f = 0) = 1/T - T = 1.$ <div style="clear:both;"> </div> </div> =='"`UNIQ--h-4--QINU`"'Step response== <br> {{BlueBox|TEXT= $\text{Definitions:}$  An input function often used in practice  $x(t)$  to measure  $H(f)$  is the  '''step response'''' :'"`UNIQ-MathJax14-QINU`"' The  '''step response'''  $\sigma(t)$  is the response of the system when the step function  $\gamma(t)$  is applied to the input: :'"`UNIQ-MathJax15-QINU`"'} The calculation in the frequency domain would be a bit awkward here, because one would then have to apply the following equation: :'"`UNIQ-MathJax16-QINU`"' The calculation in the time domain, on the other hand, leads directly to the result: :'"`UNIQ-MathJax17-QINU`"' For causal systems  $h(\tau) = 0$  holds for  $\tau \lt 0$, so the lower limit of integration in the above equation can be set to  $\tau = 0$  . <div class="bluebox"> $\text{Proof:}$  The above result is also insightful for the following reason: *The jump function  $\gamma(t)$  is related to the Dirac function  $\delta(t)$  as follows: :'"`UNIQ-MathJax18-QINU`"' *Since we have assumed linearity and integration is a linear operation, the corresponding relationship also applies to the output signal: :'"`UNIQ-MathJax19-QINU`"' <div align="right">q.e.d.</div> <div style="clear:both;"> </div> </div> [[File:EN_LZI_T_1_2_S5.png|right|frame|calculation of step response for rectangular impulse response|class=fit]] <div class="greybox"> $\text{Example 4:}$  The graph illustrates the situation for the rectangular–impulse response  $h(\tau)$. *The abscissa has been renamed to  $\tau$ . *Drawn in blue is the step function  $\gamma(\tau)$. *By mirroring and shifting one obtains  $\gamma(t - \tau)$   ⇒   violet dashed curve. *The red shaded area thus gives the step response  $\sigma(\tau)$  at time  $\tau = t$ 


Aufgaben zum Kapitel


Aufgabe 1.3: Gemessene Sprungantwort

Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort

Aufgabe 1.4: Zum Tiefpass 2. Ordnung

Aufgabe 1.4Z: Alles rechteckförmig