Difference between revisions of "Signal Representation/Direct Current Signal - Limit Case of a Periodic Signal"

From LNTwww
Line 10: Line 10:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$ 
 
$\text{Definition:}$ 
A  '''direct current (DC) signal'''   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$ . Such a signal is the boundary case of a  [[ Signal_Representation/Harmonic_Oscillation|harmonic oscillation]],  where the period duration  $T_{0}$  has an infinitely large value.}}
+
A  $\text{direct current (DC) signal}$   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$.  Such a signal is the borderline case of a  [[ Signal_Representation/Harmonic_Oscillation|harmonic oscillation]],  where the period duration  $T_{0}$  has an infinitely large value.}}
  
  
[[File:Sig_T_2_2_S1a_Version2.png|right|frame|Direct Current Signal in Time Domain]]
+
[[File:Sig_T_2_2_S1a_Version2.png|right|frame|DC signal in time domain]]
According to this definition a DC signal always ranges from  $t = -\infty$  to  $t = +\infty$.  
+
According to this definition a DC signal always ranges from  $t = -\infty$  to  $t = +\infty$. 
If the signal is only switched on at the time  $t = 0$  there is no DC signal.
+
If the constant signal is only switched on at the time  $t = 0$  there is no DC signal.
  
*A direct signal can never be a carrier of information in the message-technical sense, but message signals can possess a  ''direct signal part'' .
+
*A direct signal can never be a carrier of information in a communication system, but message signals can possess a  "direct signal part".   
 
*All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.
 
*All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.
 
<br clear=all>
 
<br clear=all>
Line 23: Line 23:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
For the&nbsp; '''DC signal component'''&nbsp; $A_{0}$ of any signal&nbsp; $x(t)$&nbsp; applies:
+
For the&nbsp; $\text{DC signal component}$&nbsp; $A_{0}$&nbsp; of any signal&nbsp; $x(t)$&nbsp; applies:
 
   
 
   
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  
 
*The measurement duration&nbsp; $T_{\rm M}$&nbsp; should always be selected as large as possible (infinite in borderline cases).   
 
*The measurement duration&nbsp; $T_{\rm M}$&nbsp; should always be selected as large as possible (infinite in borderline cases).   
*The given equation is only valid if&nbsp; $T_{\rm M}$&nbsp; symmetrical about the time&nbsp; $t=0$&nbsp; lies.}}
+
*The given equation is only valid if&nbsp; $T_{\rm M}$&nbsp; lies symmetrical about the time&nbsp; $t=0$.}}
  
  
[[File:P_ID298__Sig_T_2_2_S1_b_neu.png|right|frame|Random signal with DC componentsl]]
+
[[File:P_ID298__Sig_T_2_2_S1_b_neu.png|right|frame|Random signal with DC componentl]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
The graph shows a stochastic signal&nbsp; $x(t)$.
+
The graph shows a random signal&nbsp; $x(t)$.
 
*The DC component&nbsp; $A_{0}$&nbsp; is here&nbsp; $2\ \rm V$.
 
*The DC component&nbsp; $A_{0}$&nbsp; is here&nbsp; $2\ \rm V$.
*In the sense of statistics,&nbsp; $A_{0}$&nbsp; corresponds to the linear mean value.}}
+
*In the sense of statistics,&nbsp; $A_{0}$&nbsp; corresponds to the linear mean.}}
  
  
 
==Spectral Representation==
 
==Spectral Representation==
 
<br>
 
<br>
We now look at the situation in the frequency domain. From the time function it is already obvious, that it contains - spectrally speaking - only one single (physical) frequency, namely the frequency&nbsp; $f=0$.  
+
We now look at the situation in the frequency domain.&nbsp; From the time function it is already obvious, that it contains - spectrally speaking - only one single (physical) frequency, namely the frequency&nbsp; $f=0$.  
  
This result shall now be derived mathematically.
+
This result shall now be derived mathematically.&nbsp;
In anticipation of the chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp;  the connection between the time signal&nbsp; $x(t)$&nbsp; and the corresponding spectrum&nbsp; $X(f)$&nbsp; is already given here:
+
In anticipation of the chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|Fourier Transform]]&nbsp;  the connection between the time signal&nbsp; $x(t)$&nbsp; and the corresponding spectrum&nbsp; $X(f)$&nbsp; is already given here:
  
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
The spectral function&nbsp; $X(f)$&nbsp; after the French mathematician&nbsp;  
+
The spectral function&nbsp; $X(f)$&nbsp; is called after the French mathematician&nbsp;  
[https://en.wikipedia.org/wiki/Joseph_Fourier Jean Baptiste Joseph Fourier]&nbsp; is called the Fourier transform of&nbsp; $x(t)$&nbsp; and the short name for this functional relation is
+
[https://en.wikipedia.org/wiki/Joseph_Fourier Jean Baptiste Joseph Fourier]&nbsp; the Fourier transform of&nbsp; $x(t)$&nbsp; and the short name for this functional relation is
  
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
For example, if &nbsp; $x(t)$&nbsp;  describes a voltage curve, so&nbsp; $X(f)$&nbsp; has the unit "V/Hz
+
For example, if&nbsp; $x(t)$&nbsp;  describes a voltage curve, so&nbsp; $X(f)$&nbsp; has the unit&nbsp; "V/Hz".
  
Applying this transformation equation to the DC signal&nbsp; $x(t)=A_{0}$&nbsp; yields the spectral function
+
Applying the Fourier transform to the DC signal&nbsp; $x(t)=A_{0}$&nbsp; yields the spectral function
 
   
 
   
:$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t.$$
+
:$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t$$
  
 
with the following properties:
 
with the following properties:
*The integral diverges for&nbsp; $f=0$, i.e. it returns an infinitely large value (integration over the constant value 1)  
+
*The integral diverges for&nbsp; $f=0$, i.e. it returns an infinitely large value&nbsp; $($integration over the constant value&nbsp; $1)$.
*For a frequency&nbsp; $f\ne 0$&nbsp; on the other hand, the integral is zero; the corresponding proof, however, is not trivial (see next page).
+
*For a frequency&nbsp; $f\ne 0$&nbsp; on the other hand, the integral is zero;&nbsp; the corresponding proof, however, is not trivial (see next page).
  
  
Line 70: Line 70:
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  
*&nbsp; $\delta(f)$&nbsp; is denoted as the&nbsp; '’'Dirac function''', also known as "distribution".  
+
*&nbsp;$\delta(f)$&nbsp; is denoted as the&nbsp; $\text{Dirac function}$,&nbsp; also known as&nbsp; " distribution".  
*$\delta(f)$&nbsp; is a mathematically complicated function; the derivation can be found on the next page.}}
+
*&nbsp;$\delta(f)$&nbsp; is a mathematically complicated function; the derivation can be found on the next page.}}
  
  
[[File:Sig_T_2_2_S2_Version2.png|right|frame|DC Signal and its Spectral Function]]
+
[[File:Sig_T_2_2_S2_Version2.png|right|frame|DC signal and its spectral function]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
Line 82: Line 82:
  
  
The Dirac function at frequency&nbsp; $f=0$&nbsp; is represented by an arrow with the weight&nbsp; $A_{0}$&nbsp; }}
+
The Dirac function at frequency&nbsp; $f=0$&nbsp; is represented by an arrow with the weight&nbsp; $A_{0}$. }}
  
  
Line 89: Line 89:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
The&nbsp; '''dirac function'''&nbsp; which is extremely important for the functional description of telecommunication systems, has the following properties:
+
The&nbsp; $\text{Dirac function}$&nbsp; has the following properties:
 
*The Dirac function is infinitely narrow, i.e. it is&nbsp; $\delta(f)=0$&nbsp; for&nbsp; $f \neq 0$.
 
*The Dirac function is infinitely narrow, i.e. it is&nbsp; $\delta(f)=0$&nbsp; for&nbsp; $f \neq 0$.
 
*The Dirac function&nbsp; $\delta(f)$&nbsp; is infinitely high at the frequency&nbsp; $f = 0$&nbsp;.
 
*The Dirac function&nbsp; $\delta(f)$&nbsp; is infinitely high at the frequency&nbsp; $f = 0$&nbsp;.
*The impulse area of the Dirac function yields a finite value, namely&nbsp; $1$:  
+
*The Dirac weight&nbsp; $($area of the Dirac function$)$&nbsp; yields a finite value, namely&nbsp; $1$:  
 
:$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f  =1.$$
 
:$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f  =1.$$
 
*It follows from this last property that&nbsp; $\delta(f)$&nbsp; has the unit&nbsp; ${\rm Hz}^{-1} = {\rm s}$&nbsp;.}}
 
*It follows from this last property that&nbsp; $\delta(f)$&nbsp; has the unit&nbsp; ${\rm Hz}^{-1} = {\rm s}$&nbsp;.}}
Line 100: Line 100:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Proof:}$&nbsp;
 
$\text{Proof:}$&nbsp;
For the mathematical derivation of the above properties we assume a dimensionless direct signal.  
+
For the mathematical derivation of the above properties we assume a dimensionless direct signal&nbsp; $x(t)$.  
  
To force the convergence of the Fourier integral, the non-energy-limited signal&nbsp; $x(t)$&nbsp; is multiplied by a bilateral declining exponential function. The graph shows the signal&nbsp; $x(t)=1$&nbsp; and the energy-limited signal
+
*To force the convergence of the Fourier integral, the non-energy-limited signal&nbsp; $x(t)$&nbsp; is multiplied by a bilateral declining exponential function. The graph shows the signal&nbsp; $x(t)=1$&nbsp; and the energy-limited signal
  
 
:$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
 
:$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
  
The following applies here&nbsp; $\varepsilon > 0$. At the limit point &nbsp; $\varepsilon \to 0$&nbsp;, &nbsp; $x_{\varepsilon}(t)$&nbsp; passes to&nbsp; $x(t)=1$&nbsp;.
+
:It applies&nbsp; $\varepsilon > 0$.&nbsp; At the limit &nbsp; $\varepsilon \to 0$&nbsp;, &nbsp; $x_{\varepsilon}(t)$&nbsp; passes to&nbsp; $x(t)=1$.
  
The spectral representation is obtained by applying the Fourier integral given above:
+
*The spectral representation is obtained by applying the Fourier integral given above:
 
   
 
   
 
:$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
:$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
After integration and combination of both parts we obtain the purely real spectral function of the energy-limited signal&nbsp; $x_{\varepsilon}(t)$:
+
*After integration and combination of both parts we obtain the purely real spectral function of the energy-limited signal&nbsp; $x_{\varepsilon}(t)$:
 
   
 
   
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  
The area under the&nbsp; $X_\varepsilon (f)$&ndash;curve is independent of the parameter&nbsp; $\varepsilon$&nbsp; equals&nbsp; $1$. The smaller&nbsp; $ε$&nbsp; is selected, the narrower and higher the function becomes, as the learning video(in german)&nbsp; [[Herleitung_und_Visualisierung_der_Diracfunktion_(Lernvideo)|Derivation and Visualization of the Dirac Function]]&nbsp; shows.
+
*The area under the&nbsp; $X_\varepsilon (f)$ curve is independent of the parameter&nbsp; $\varepsilon$&nbsp; equals&nbsp; $1$. The smaller&nbsp; $ε$&nbsp; is selected, the narrower and higher the function becomes, as the following (German language) learning video shows:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Herleitung und Visualisierung der Diracfunktion (Lernvideo)|Herleitung und Visualisierung der Diracfunktion]] &nbsp; &rArr; &nbsp; "Derivation and visualization of the Dirac function".  
  
The limit for&nbsp; $\varepsilon \to 0$&nbsp; returns the Dirac function with the weight&nbsp; $1$:
+
*The limit for&nbsp; $\varepsilon \to 0$&nbsp; returns the Dirac function with the weight&nbsp; $1$:
  
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}

Revision as of 16:15, 12 April 2021


Time Signal Representation


$\text{Definition:}$  A  $\text{direct current (DC) signal}$   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$.  Such a signal is the borderline case of a  harmonic oscillation, where the period duration  $T_{0}$  has an infinitely large value.


DC signal in time domain

According to this definition a DC signal always ranges from  $t = -\infty$  to  $t = +\infty$.  If the constant signal is only switched on at the time  $t = 0$  there is no DC signal.

  • A direct signal can never be a carrier of information in a communication system, but message signals can possess a  "direct signal part". 
  • All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.


$\text{Definition:}$  For the  $\text{DC signal component}$  $A_{0}$  of any signal  $x(t)$  applies:

$$A_0 = \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  • The measurement duration  $T_{\rm M}$  should always be selected as large as possible (infinite in borderline cases).
  • The given equation is only valid if  $T_{\rm M}$  lies symmetrical about the time  $t=0$.


Random signal with DC componentl

$\text{Example 1:}$  The graph shows a random signal  $x(t)$.

  • The DC component  $A_{0}$  is here  $2\ \rm V$.
  • In the sense of statistics,  $A_{0}$  corresponds to the linear mean.


Spectral Representation


We now look at the situation in the frequency domain.  From the time function it is already obvious, that it contains - spectrally speaking - only one single (physical) frequency, namely the frequency  $f=0$.

This result shall now be derived mathematically.  In anticipation of the chapter  Fourier Transform  the connection between the time signal  $x(t)$  and the corresponding spectrum  $X(f)$  is already given here:

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

The spectral function  $X(f)$  is called after the French mathematician  Jean Baptiste Joseph Fourier  the Fourier transform of  $x(t)$  and the short name for this functional relation is

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

For example, if  $x(t)$  describes a voltage curve, so  $X(f)$  has the unit  "V/Hz".

Applying the Fourier transform to the DC signal  $x(t)=A_{0}$  yields the spectral function

$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t$$

with the following properties:

  • The integral diverges for  $f=0$, i.e. it returns an infinitely large value  $($integration over the constant value  $1)$.
  • For a frequency  $f\ne 0$  on the other hand, the integral is zero;  the corresponding proof, however, is not trivial (see next page).


$\text{Definition:}$  The searched spectral function  $X(f)$  is compactly expressed by the following equation

$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  •  $\delta(f)$  is denoted as the  $\text{Dirac function}$,  also known as  " distribution".
  •  $\delta(f)$  is a mathematically complicated function; the derivation can be found on the next page.


DC signal and its spectral function

$\text{Example 2:}$  The graphic shows the functional connection

  • between an DC signal  $x(t)=A_{0}$  and
  • its corresponding spectral function  $X(f)=A_{0} \cdot \delta(f)$.


The Dirac function at frequency  $f=0$  is represented by an arrow with the weight  $A_{0}$.


Dirac Function in Frequency Domain


$\text{Definition:}$  The  $\text{Dirac function}$  has the following properties:

  • The Dirac function is infinitely narrow, i.e. it is  $\delta(f)=0$  for  $f \neq 0$.
  • The Dirac function  $\delta(f)$  is infinitely high at the frequency  $f = 0$ .
  • The Dirac weight  $($area of the Dirac function$)$  yields a finite value, namely  $1$:
$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f =1.$$
  • It follows from this last property that  $\delta(f)$  has the unit  ${\rm Hz}^{-1} = {\rm s}$ .


The Derivation of the Dirac Function

$\text{Proof:}$  For the mathematical derivation of the above properties we assume a dimensionless direct signal  $x(t)$.

  • To force the convergence of the Fourier integral, the non-energy-limited signal  $x(t)$  is multiplied by a bilateral declining exponential function. The graph shows the signal  $x(t)=1$  and the energy-limited signal
$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
It applies  $\varepsilon > 0$.  At the limit   $\varepsilon \to 0$ ,   $x_{\varepsilon}(t)$  passes to  $x(t)=1$.
  • The spectral representation is obtained by applying the Fourier integral given above:
$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  • After integration and combination of both parts we obtain the purely real spectral function of the energy-limited signal  $x_{\varepsilon}(t)$:
$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  • The area under the  $X_\varepsilon (f)$ curve is independent of the parameter  $\varepsilon$  equals  $1$. The smaller  $ε$  is selected, the narrower and higher the function becomes, as the following (German language) learning video shows:
           Herleitung und Visualisierung der Diracfunktion   ⇒   "Derivation and visualization of the Dirac function".
  • The limit for  $\varepsilon \to 0$  returns the Dirac function with the weight  $1$:
$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$


Exercises for the chapter


Exercise 2.2: Direct Current Component of Signals

Exercise 2.2Z: Nonlinearities