Difference between revisions of "Signal Representation/Direct Current Signal - Limit Case of a Periodic Signal"

From LNTwww
 
Line 10: Line 10:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$ 
 
$\text{Definition:}$ 
A  »'''direct current (DC) signal}»'''   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$.  Such a signal is the borderline case of a  [[ Signal_Representation/Harmonic_Oscillation|"harmonic oscillation"]],  where the period duration  $T_{0}$  has an infinitely large value.}}
+
A  »'''direct current (DC) signal«'''   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$.  Such a signal is the borderline case of a  [[ Signal_Representation/Harmonic_Oscillation|»harmonic oscillation«]],  where the period duration  $T_{0}$  has an infinitely large value.}}
  
  
Line 17: Line 17:
 
If the constant signal is only switched on at the time  $t = 0$  there is no DC signal.
 
If the constant signal is only switched on at the time  $t = 0$  there is no DC signal.
  
*A direct signal can never be a carrier of information in a communication system, but message signals can possess a  "direct signal  component". 
+
*A direct signal can never be a carrier of information in a communication system,&nbsp but transmitted signals can possess a  »direct signal  component«. 
 
   
 
   
 
*All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.
 
*All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.
Line 28: Line 28:
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  
*The measurement duration  $T_{\rm M}$  should always be selected as large as possible (infinite in borderline cases).
+
*The measurement duration  $T_{\rm M}$  should always be selected as large as possible  $($infinite in borderline cases$)$.
 
    
 
    
 
*The given equation is only valid if  $T_{\rm M}$  lies symmetrical about the time  $t=0$.}}
 
*The given equation is only valid if  $T_{\rm M}$  lies symmetrical about the time  $t=0$.}}
Line 37: Line 37:
 
$\text{Example 1:}$ 
 
$\text{Example 1:}$ 
 
The graph shows a random signal  $x(t)$.
 
The graph shows a random signal  $x(t)$.
*The DC component  $A_{0}$  is here  $2\ \rm V$.
+
*The DC component is here  $A_{0} = 2\ \rm V$.
  
 
*In the sense of statistics,  $A_{0}$  corresponds to the linear mean.}}
 
*In the sense of statistics,  $A_{0}$  corresponds to the linear mean.}}
Line 44: Line 44:
 
==Spectral representation==
 
==Spectral representation==
 
<br>
 
<br>
We now look at the situation in the frequency domain.&nbsp; From the time function it is already obvious, that it contains - spectrally speaking - only one single (physical) frequency, namely the frequency&nbsp; $f=0$.  
+
We now look at the situation in the frequency domain.&nbsp; From the time function it is already obvious,&nbsp; that it contains &ndash; spectrally speaking &ndash; only one single&nbsp; $($physical$)$&nbsp; frequency,&nbsp; namely the frequency&nbsp; $f=0$.  
  
 
&rArr; &nbsp; This result shall now be derived mathematically.&nbsp;
 
&rArr; &nbsp; This result shall now be derived mathematically.&nbsp;
In anticipation of the chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|"Fourier Transform"]]&nbsp;  the connection between the time signal&nbsp; $x(t)$&nbsp; and the corresponding spectrum&nbsp; $X(f)$&nbsp; is already given here:
+
In anticipation of the chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;Fourier Transform&laquo;]]&nbsp;  the connection between the time signal&nbsp; $x(t)$&nbsp; and the corresponding spectrum&nbsp; $X(f)$&nbsp; is already given here:
  
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
 
The spectral function&nbsp; $X(f)$&nbsp; is called after the French mathematician&nbsp;  
 
The spectral function&nbsp; $X(f)$&nbsp; is called after the French mathematician&nbsp;  
[https://en.wikipedia.org/wiki/Joseph_Fourier $\text{Jean Baptiste Joseph Fourier}$]&nbsp; the Fourier transform of&nbsp; $x(t)$&nbsp; and the short labeling for this functional relation is
+
[https://en.wikipedia.org/wiki/Joseph_Fourier $\text{Jean Baptiste Joseph Fourier}$]&nbsp; the&nbsp; &raquo;'''Fourier transform'''&laquo;&nbsp; of the signal&nbsp; $x(t)$&nbsp; and the short labeling for this functional relation is
  
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
For example, if&nbsp; $x(t)$&nbsp;  describes a voltage curve, so&nbsp; $X(f)$&nbsp; has the unit&nbsp; "V/Hz".
+
For example,&nbsp; if&nbsp; $x(t)$&nbsp;  describes a voltage curve,&nbsp; so&nbsp; $X(f)$&nbsp; has the unit&nbsp; "V/Hz".
  
 
&rArr; &nbsp;Applying the Fourier transform to the DC signal&nbsp; $x(t)=A_{0}$&nbsp; yields the spectral function
 
&rArr; &nbsp;Applying the Fourier transform to the DC signal&nbsp; $x(t)=A_{0}$&nbsp; yields the spectral function
Line 63: Line 63:
  
 
with the following properties:
 
with the following properties:
*The integral diverges for&nbsp; $f=0$, i.e. it returns an infinitely large value&nbsp; $($integration over the constant value&nbsp; $1)$.
+
*The integral diverges for&nbsp; $f=0$,&nbsp; i.e. it returns an infinitely large value&nbsp; $($integration over the constant value&nbsp; $1)$.
  
*For a frequency&nbsp; $f\ne 0$&nbsp; on the other hand, the integral is zero;&nbsp; the corresponding proof, however, is not trivial (see next section).
+
*For a frequency&nbsp; $f\ne 0$,&nbsp; on the other hand,&nbsp; the integral is zero;&nbsp; the corresponding proof,&nbsp; however,&nbsp; is not trivial&nbsp; $($see next section$)$.
  
  
Line 74: Line 74:
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  
*&nbsp;$\delta(f)$&nbsp; is denoted as the&nbsp; &raqou;'''Dirac delta function'''&laqou;,&nbsp; also known as&nbsp; &raqou;'''distribution'''&laqou;.
+
#&nbsp;$\delta(f)$&nbsp; is denoted as the&nbsp; &raquo;'''Dirac delta function'''&laquo;,&nbsp; also known as&nbsp; &raquo;'''distribution'''&laquo;.  
+
#&nbsp;$\delta(f)$&nbsp; is a mathematically complicated function; the derivation can be found in the next section.}}
*&nbsp;$\delta(f)$&nbsp; is a mathematically complicated function; the derivation can be found in the next section.}}
 
  
  
Line 96: Line 95:
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
 
The&nbsp; &raquo;'''Dirac delta function'''&laquo; &nbsp; &rArr; &nbsp; short:&nbsp;  &raquo;'''Dirac function'''&laquo;&nbsp; has the following properties:
 
The&nbsp; &raquo;'''Dirac delta function'''&laquo; &nbsp; &rArr; &nbsp; short:&nbsp;  &raquo;'''Dirac function'''&laquo;&nbsp; has the following properties:
*The Dirac delta function is infinitely narrow, i.e. it is&nbsp; $\delta(f)=0$&nbsp; for&nbsp; $f \neq 0$.
+
*The Dirac delta function is infinitely narrow,&nbsp; i.e. it is&nbsp; $\delta(f)=0$&nbsp; for&nbsp; $f \neq 0$.
  
 
*The Dirac delta function&nbsp; $\delta(f)$&nbsp; is infinitely high at the frequency&nbsp; $f = 0$&nbsp;.
 
*The Dirac delta function&nbsp; $\delta(f)$&nbsp; is infinitely high at the frequency&nbsp; $f = 0$&nbsp;.
Line 110: Line 109:
 
For the mathematical derivation of these properties we assume a dimensionless DC signal&nbsp; $x(t)$.  
 
For the mathematical derivation of these properties we assume a dimensionless DC signal&nbsp; $x(t)$.  
  
*To force the convergence of the Fourier integral, the non-energy-limited signal&nbsp; $x(t)$&nbsp; is multiplied by a bilateral declining exponential function.  
+
*To force the convergence of the Fourier integral,&nbsp; the non-energy-limited signal&nbsp; $x(t)$&nbsp; is multiplied by a bilateral declining exponential function.  
  
 
*The graph shows the signal&nbsp; $x(t)=1$&nbsp; and the energy-limited signal
 
*The graph shows the signal&nbsp; $x(t)=1$&nbsp; and the energy-limited signal
Line 126: Line 125:
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  
*The area under the&nbsp; $X_\varepsilon (f)$ curve is independent of the parameter&nbsp; $\varepsilon$&nbsp; equals&nbsp; $1$. The smaller&nbsp; $ε$&nbsp; is selected, the narrower and higher the function becomes, as the following (German language) learning video shows:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Herleitung und Visualisierung der Diracfunktion (Lernvideo)|"Herleitung und Visualisierung der Diracfunktion"]] &nbsp; &rArr; &nbsp; "Derivation and visualization of the Dirac delta function".  
+
*The area under the&nbsp; $X_\varepsilon (f)$&nbsp; curve is independent of the parameter&nbsp; $\varepsilon$&nbsp; equals&nbsp; $1$. The smaller&nbsp; $ε$&nbsp; is selected,&nbsp; the narrower and higher the function becomes,&nbsp; as the&nbsp; $($German language$)$&nbsp; learning video&nbsp; [[Herleitung und Visualisierung der Diracfunktion (Lernvideo)|&raquo;Herleitung und Visualisierung der Diracfunktion&laquo;]] &nbsp; &rArr; &nbsp; "Derivation and visualization of the Dirac delta function"&nbsp; shows.  
  
*The limit for&nbsp; $\varepsilon \to 0$&nbsp; returns the Dirac delta function with the weight&nbsp; $1$:
+
*The limit for&nbsp; $\varepsilon \to 0$&nbsp; returns the Dirac delta function with weight&nbsp; $1$:
  
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}

Latest revision as of 16:55, 8 June 2023


Time signal representation


$\text{Definition:}$  A  »direct current (DC) signal«   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$.  Such a signal is the borderline case of a  »harmonic oscillation«,  where the period duration  $T_{0}$  has an infinitely large value.


DC signal in time domain

According to this definition a DC signal always ranges from  $t = -\infty$  to  $t = +\infty$.  If the constant signal is only switched on at the time  $t = 0$  there is no DC signal.

  • A direct signal can never be a carrier of information in a communication system,&nbsp but transmitted signals can possess a  »direct signal component«. 
  • All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.


$\text{Definition:}$  For the  »DC signal component«  $A_{0}$  of any signal  $x(t)$  applies:

$$A_0 = \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  • The measurement duration  $T_{\rm M}$  should always be selected as large as possible  $($infinite in borderline cases$)$.
  • The given equation is only valid if  $T_{\rm M}$  lies symmetrical about the time  $t=0$.


Random signal with DC componentl

$\text{Example 1:}$  The graph shows a random signal  $x(t)$.

  • The DC component is here  $A_{0} = 2\ \rm V$.
  • In the sense of statistics,  $A_{0}$  corresponds to the linear mean.


Spectral representation


We now look at the situation in the frequency domain.  From the time function it is already obvious,  that it contains – spectrally speaking – only one single  $($physical$)$  frequency,  namely the frequency  $f=0$.

⇒   This result shall now be derived mathematically.  In anticipation of the chapter  »Fourier Transform«  the connection between the time signal  $x(t)$  and the corresponding spectrum  $X(f)$  is already given here:

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

The spectral function  $X(f)$  is called after the French mathematician  $\text{Jean Baptiste Joseph Fourier}$  the  »Fourier transform«  of the signal  $x(t)$  and the short labeling for this functional relation is

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

For example,  if  $x(t)$  describes a voltage curve,  so  $X(f)$  has the unit  "V/Hz".

⇒  Applying the Fourier transform to the DC signal  $x(t)=A_{0}$  yields the spectral function

$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t$$

with the following properties:

  • The integral diverges for  $f=0$,  i.e. it returns an infinitely large value  $($integration over the constant value  $1)$.
  • For a frequency  $f\ne 0$,  on the other hand,  the integral is zero;  the corresponding proof,  however,  is not trivial  $($see next section$)$.


$\text{Definition:}$  The searched spectral function  $X(f)$  is compactly expressed by the following equation:

$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  1.  $\delta(f)$  is denoted as the  »Dirac delta function«,  also known as  »distribution«.
  2.  $\delta(f)$  is a mathematically complicated function; the derivation can be found in the next section.


DC signal and its spectral function

$\text{Example 2:}$  The graphic shows the functional connection

  • between an DC signal  $x(t)=A_{0}$  and
  • its corresponding spectral function  $X(f)=A_{0} \cdot \delta(f)$.


The Dirac delta function at frequency  $f=0$  is represented by an arrow with weight  $A_{0}$.


Dirac (delta) function in frequency domain


$\text{Definition:}$  The  »Dirac delta function«   ⇒   short:  »Dirac function«  has the following properties:

  • The Dirac delta function is infinitely narrow,  i.e. it is  $\delta(f)=0$  for  $f \neq 0$.
  • The Dirac delta function  $\delta(f)$  is infinitely high at the frequency  $f = 0$ .
  • The Dirac delta weight  $($area of the Dirac function$)$  yields a finite value, namely  $1$:
$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f =1.$$
  • It follows from this last property that  $\delta(f)$  has the unit  ${\rm Hz}^{-1} = {\rm s}$ .


The derivation of the Dirac delta function

$\text{Proof:}$  For the mathematical derivation of these properties we assume a dimensionless DC signal  $x(t)$.

  • To force the convergence of the Fourier integral,  the non-energy-limited signal  $x(t)$  is multiplied by a bilateral declining exponential function.
  • The graph shows the signal  $x(t)=1$  and the energy-limited signal
$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
It applies  $\varepsilon > 0$.  At the limit   $\varepsilon \to 0$ ,   $x_{\varepsilon}(t)$  passes to  $x(t)=1$.
  • The spectral representation is obtained by applying the Fourier integral given above:
$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  • After integration and combination of both parts we obtain the purely real spectral function of the energy-limited signal  $x_{\varepsilon}(t)$:
$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  • The area under the  $X_\varepsilon (f)$  curve is independent of the parameter  $\varepsilon$  equals  $1$. The smaller  $ε$  is selected,  the narrower and higher the function becomes,  as the  $($German language$)$  learning video  »Herleitung und Visualisierung der Diracfunktion«   ⇒   "Derivation and visualization of the Dirac delta function"  shows.
  • The limit for  $\varepsilon \to 0$  returns the Dirac delta function with weight  $1$:
$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$


Exercises for the chapter


Exercise 2.2: Direct Current Component of Signals

Exercise 2.2Z: Non–Linearities