Direct Current Signal - Limit Case of a Periodic Signal

From LNTwww


Time Signal Representation


$\text{Definition:}$  A  direct current (DC) signal   is a deterministic signal whose instantaneous values are constant for all times  $t$  from  $-\infty$  to  $+\infty$ . Such a signal is the boundary case of a  harmonic oscillation, where the period duration  $T_{0}$  has an infinitely large value.


Direct Current Signal in Time Domain

According to this definition a DC signal always ranges from  $t = -\infty$  to  $t = +\infty$. If the signal is only switched on at the time  $t = 0$  there is no DC signal.

  • A direct signal can never be a carrier of information in the message-technical sense, but message signals can possess a  direct signal part .
  • All statements made in the following for the direct current signal apply in the same way also to such a direct signal component.


$\text{Definition:}$  For the  DC signal component  $A_{0}$ of any signal  $x(t)$  applies:

$$A_0 = \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  • The measurement duration  $T_{\rm M}$  should always be selected as large as possible (infinite in borderline cases).
  • The given equation is only valid if  $T_{\rm M}$  symmetrical about the time  $t=0$  lies.


Random signal with DC componentsl

$\text{Example 1:}$  The graph shows a stochastic signal  $x(t)$.

  • The DC component  $A_{0}$  is here  $2\ \rm V$.
  • In the sense of statistics,  $A_{0}$  corresponds to the linear mean value.


Spectral Representation


We now look at the situation in the frequency domain. From the time function it is already obvious, that it contains - spectrally speaking - only one single (physical) frequency, namely the frequency  $f=0$.

This result shall now be derived mathematically. In anticipation of the chapter  Fouriertransformation  the connection between the time signal  $x(t)$  and the corresponding spectrum  $X(f)$  is already given here:

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

The spectral function  $X(f)$  after the French mathematician  Jean Baptiste Joseph Fourier  is called the Fourier transform of  $x(t)$  and the short name for this functional relation is

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

For example, if   $x(t)$  describes a voltage curve, so  $X(f)$  has the unit "V/Hz

Applying this transformation equation to the DC signal  $x(t)=A_{0}$  yields the spectral function

$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t.$$

with the following properties:

  • The integral diverges for  $f=0$, i.e. it returns an infinitely large value (integration over the constant value 1)
  • For a frequency  $f\ne 0$  on the other hand, the integral is zero; the corresponding proof, however, is not trivial (see next page).


$\text{Definition:}$  The searched spectral function  $X(f)$  is compactly expressed by the following equation

$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  •   $\delta(f)$  is denoted as the  '’'Dirac function, also known as "distribution".
  • $\delta(f)$  is a mathematically complicated function; the derivation can be found on the next page.


DC Signal and its Spectral Function

$\text{Example 2:}$  The graphic shows the functional connection

  • between an DC signal  $x(t)=A_{0}$  and
  • its corresponding spectral function  $X(f)=A_{0} \cdot \delta(f)$.


The Dirac function at frequency  $f=0$  is represented by an arrow with the weight  $A_{0}$ 


Dirac Function in Frequency Domain


$\text{Definition:}$  The  dirac function  which is extremely important for the functional description of telecommunication systems, has the following properties:

  • The Dirac function is infinitely narrow, i.e. it is  $\delta(f)=0$  for  $f \neq 0$.
  • The Dirac function  $\delta(f)$  is infinitely high at the frequency  $f = 0$ .
  • The impulse area of the Dirac function yields a finite value, namely  $1$:
$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f =1.$$
  • It follows from this last property that  $\delta(f)$  has the unit  ${\rm Hz}^{-1} = {\rm s}$ .


The Derivation of the Dirac Function

$\text{Proof:}$  For the mathematical derivation of the above properties we assume a dimensionless direct signal.

To force the convergence of the Fourier integral, the non-energy-limited signal  $x(t)$  is multiplied by a bilateral declining exponential function. The graph shows the signal  $x(t)=1$  and the energy-limited signal

$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$

The following applies here  $\varepsilon > 0$. At the limit point   $\varepsilon \to 0$ ,   $x_{\varepsilon}(t)$  passes to  $x(t)=1$ .

The spectral representation is obtained by applying the Fourier integral given above:

$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

After integration and combination of both parts we obtain the purely real spectral function of the energy-limited signal  $x_{\varepsilon}(t)$:

$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$

The area under the  $X_\varepsilon (f)$–curve is independent of the parameter  $\varepsilon$  equals  $1$. The smaller  $ε$  is selected, the narrower and higher the function becomes, as the learning video(in german)  Derivation and Visualization of the Dirac Function  shows.

The limit for  $\varepsilon \to 0$  returns the Dirac function with the weight  $1$:

$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$


Exercises for the chapter


Exercise 2.2: Direct Current Component of Signals

Exercise 2.2Z: Nonlinearities