Difference between revisions of "Signal Representation/Discrete-Time Signal Representation"

From LNTwww
 
(100 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zeit- und frequenzdiskrete Signaldarstellung
+
|Untermenü=Time and Frequency-Discrete Signal Representation
|Vorherige Seite=Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
|Vorherige Seite=Equivalent Low-Pass Signal and Its Spectral Function
|Nächste Seite=Diskrete Fouriertransformation (DFT)
+
|Nächste Seite=Discrete Fourier Transform (DFT)
 
}}
 
}}
  
==Prinzip und Motivation==
+
== # OVERVIEW OF THE FIFTH MAIN CHAPTER # ==
 +
<br>
 +
A prerequisite for the system-theoretical investigation of digital systems or for their computer simulation is a suitable discrete-time signal description.&nbsp;
  
Die meisten Quellensignale von Nachrichtensystemen sind analog und damit zeitkontinuierlich und gleichzeitig wertkontinuierlich. Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:
+
This chapter clarifies the mathematical transition from continuous-time to discrete-time signals,&nbsp; starting from the&nbsp;  [[Signal_Representation/The_Fourier_Transform_and_its_Inverse|&raquo;Fourier transform theorems&laquo;]].
*die '''Abtastung''' des zeitkontinuierlichen Nachrichtensignals $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt.
 
*die '''Quantisierung''' mit dem Ziel, die wertkontinuierlichen Abtastwerte zu diskretisieren und so die Anzahl $M$ der möglichen Werte auf einen endlichen Wert zu begrenzen.
 
  
Die Quantisierung wird erst im Kapitel 4.1 des Buches „Modulationsverfahren” behandelt.
+
The chapter includes in detail:
 +
#The&nbsp; &raquo;time and frequency domain representation&laquo;&nbsp; of discrete-time signals,
 +
#the&nbsp; &raquo;sampling theorem&laquo;,&nbsp; which must be strictly observed in time discretization,
 +
#the&nbsp; &raquo;reconstruction of the analog signal&laquo;&nbsp; from the discrete-time representation,
 +
#the&nbsp; &raquo;discrete Fourier transform&laquo;&nbsp; $\rm (DFT)$&nbsp; and its inverse&nbsp; $\rm (IDFT)$,
 +
#the&nbsp; &raquo;possibilities for error&laquo;&nbsp; when applying DFT and IDFT,
 +
#the application of&nbsp; &raquo;spectral analysis&laquo;&nbsp; to the improvement of metrological procedures,&nbsp; and
 +
#the&nbsp; &raquo;FFT algorithm&laquo;&nbsp; particularly suitable for computer implementation.
  
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|250px|right|Zur Zeitdiskretisierung des Zeitsignals]]
 
  
Im Folgenden beschreiben wir die Abtastung in mathematisch exakter Weise, wobei wir folgende Nomenklatur verwenden:
+
==Principle and motivation==
*Das zeitkontinuierliche Signal sei $x(t)$.
+
<br>
*Das in äquidistanten Abständen $T_{\rm A}$abgetastete zeitdiskretisierte Signal sei $x_A(t)$.
+
Many source signals are analog and thus simultaneously&nbsp; [[Signal_Representation/Signal_classification#Continuous-time_and_discrete-time_signals|&raquo;continuous-time&laquo;]]&nbsp; and&nbsp; [[Signal_Representation/Signal_classification#Continuous-valued_and_discrete-valued_signals|&raquo;continuous&ndash;valued&laquo;]].&nbsp; If such an analog signal is to be transmitted by means of a digital system,&nbsp; the following preprocessing steps are required:
*Außerhalb der Abtastzeitpunkte $ν \cdot T_{\rm A}$ gilt stets $x_A(t) = 0$.
+
*the&nbsp; &raquo;'''sampling'''&laquo;&nbsp; of the source signal&nbsp; $x(t)$,&nbsp; which is expediently &ndash; but not necessarily &ndash; performed at equidistant times &nbsp; &rArr; &nbsp; &raquo;time discretization&laquo;,
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten $K$:
+
 
+
*the&nbsp; &raquo;'''quantization'''&laquo;&nbsp; of the samples,&nbsp; so as to limit the number&nbsp; $M$&nbsp; of possible values to a finite value &nbsp; &rArr; &nbsp; &raquo;value discretization&laquo;.
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
+
 
  
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt $K$ = 1.
+
Quantization is not discussed in detail until the chapter&nbsp; [[Modulation_Methods/Pulscodemodulation|&raquo;Pulse Code Modulation&laquo;]] &nbsp;of the book&nbsp; "Modulation Methods".
  
 +
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|right|frame|On time discretization of the continuous-time signal&nbsp; $x(t)$]]
  
==Zeitbereichsdarstellung==
+
In the following,&nbsp; we use the following nomenclature to describe the sampling:
 +
*Let the continuous-time signal be&nbsp; $x(t)$.&nbsp; Let the signal sampled at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; be&nbsp; $x_{\rm A}(t)$.
  
Im gesamten Lerntutorial soll unter „Abtastung” die Multiplikation des zeitkontinuierlichen Signals $x(t)$ mit dem Diracpuls $p_{\delta}(t)$ verstanden werden:
+
*Let the run variable&nbsp; $\nu$&nbsp; of the sample be an&nbsp; [[Signal_Representation/Calculating_with_Complex_Numbers#The_set_of_real_numbers|$\text{integer}$]]:
 +
:$$\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .$$
 +
*Outside the sampling time points&nbsp; $\nu \cdot T_{\rm A}$&nbsp; always holds&nbsp; $x_{\rm A}(t) = 0$.&nbsp; At the equidistant sampling times,&nbsp; the result is  with the constant&nbsp; $K$:
 
   
 
   
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
+
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  
Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden. Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der Diskreten Fouriertransformation im Abschnitt 5.2 als am besten geeignet.
+
*$K$&nbsp; depends on the time discretization type.&nbsp; For the sketch:&nbsp; $K = 1$.
  
{{Definition}}
+
==Time domain representation==
Der Diracpuls (im Zeitbereich) besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand $T_{\rm A}$ und alle mit gleichem Impulsgewicht $T_{\rm A}$:
+
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; &raquo;'''sampling'''&laquo;&nbsp; shall be understood as the multiplication of the continuous-time signal&nbsp; $x(t)$&nbsp; by the&nbsp; &raquo;Dirac comb&laquo;&nbsp; $p_{\delta}(t)$:
 
   
 
   
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
+
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$}}
\delta(t- \nu \cdot T_{\rm A}
 
)\hspace{0.05cm}.$$
 
{{end}}
 
  
  
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
+
It should be noted that other description forms are found in the literature.&nbsp; However,&nbsp; to the authors,&nbsp; the form chosen here appears to be the most appropriate in terms of spectral representation and derivation of the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|&raquo;Discrete Fourier Transform&laquo;]]&nbsp;  $\rm (DFT)$.
*Das abgetastete Signal zum betrachteten Zeitpunkt ($ν \cdot T_{\rm A}$) ist gleich $T_{\rm A} \cdot x(ν \cdot T_{\rm A}) · \delta (0)$.
 
*Da die Diracfunktion zur Zeit $t = 0$ unendlich ist, sind eigentlich alle Signalwerte $x_A(ν \cdot T_{\rm A})$ ebenfalls unendlich groß.
 
*Somit ist auch der auf der letzten Seite eingeführte Faktor $K$ eigentlich unendlich groß.
 
  
Trotzdem unterscheiden sich zwei Abtastwerte – beispielsweise $x_A(ν_1 \cdot T_{\rm A})$ und $x_A(ν_2 \cdot T_{\rm A})$ – im gleichen Verhältnis wie die Signalwerte $x(ν_1 \cdot T_{\rm A})$ und $x(ν_2 \cdot T_{\rm A})$.
+
{{BlaueBox|TEXT=
Die Abtastwerte von $x(t)$ erscheinen in den Impulsgewichten der Diracfunktionen:
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Dirac comb'''&laquo;&nbsp; $($in the time domain$)$&nbsp; consists of infinitely many Dirac deltas,&nbsp; each equally spaced&nbsp; $T_{\rm A}$&nbsp; and all with equal impulse weight&nbsp; $T_{\rm A}$:
 
   
 
   
$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
+
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
  \delta (t- \nu \cdot T_{\rm A}
+
  \delta(t- \nu \cdot T_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
*Die zusätzliche Multiplikation mit $T_{\rm A}$ ist erforderlich, damit $x(t)$ und $x_A(t)$ gleiche Einheit besitzen. Beachten Sie hierbei, dass $\delta (t)$ selbst die Einheit „1/s” aufweist.
+
*Sometimes&nbsp; $p_{\delta}(t)$&nbsp; is also called&nbsp; &raquo;impulse train&laquo;&nbsp; or&nbsp; &raquo;sampling function&laquo;.
  
Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent und richtig anwendet.
+
*The additional multiplication by&nbsp; $T_{\rm A}$&nbsp; is necessary so that&nbsp; $x(t)$&nbsp; and&nbsp; $x_{\rm A}(t)$&nbsp; have the same unit.&nbsp; Note here that&nbsp; $\delta (t)$&nbsp; itself has the unit&nbsp; "1/s".}}
  
  
==Diracpuls im Zeit und Frequenzbereich==
+
Based on this definition,&nbsp; the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; has the following properties:
 +
#The sampled signal at the considered time&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; is equal to&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) \cdot \delta (0)$.
 +
#Since the Dirac delta function&nbsp; $\delta (t)$&nbsp; is infinite at time&nbsp; $t = 0$&nbsp; all signal values&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; are also infinite.
 +
#Thus,&nbsp; the factor&nbsp; $K$&nbsp; introduced in the last section is actually infinite as well.
 +
#However,&nbsp; two samples&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; differ in the same proportion as the signal values&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
 +
#The samples of&nbsp; $x(t)$&nbsp; appear in the weights of the Dirac delta functions:
 +
 +
::$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 +
\delta (t- \nu \cdot T_{\rm A}
 +
)\hspace{0.05cm}.$$
 +
The following sections will show that these equations,&nbsp; which take some getting used to,&nbsp; do lead to reasonable results,&nbsp; if they are applied consistently.
  
Entwickelt man den '''Diracpuls''' in eine Fourierreihe und transformiert diese unter Anwendung des Verschiebungssatzes in den Frequenzbereich, so ergibt sich folgende Korrespondenz:
+
==Dirac comb in time and frequency domain==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Theorem:}$&nbsp;  Developing the&nbsp; &raquo;Dirac comb&laquo;&nbsp; into a&nbsp; [[Signal_Representation/Fourier_Series|&raquo;Fourier series&laquo;]] &nbsp; and transforming it into the frequency domain using the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;shifting theorem&laquo;]]&nbsp; gives the following Fourier correspondence:
 
   
 
   
$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
+
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
  \delta(t- \nu \cdot T_{\rm A}
 
  \delta(t- \nu \cdot T_{\rm A}
 
  )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
  )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
  (f- \mu \cdot f_{\rm A}
+
  (f- \mu \cdot f_{\rm A} ).$$
).$$
 
  
Hierbei gibt $f_A = 1/T_{\rm A}$ den Abstand zweier benachbarter Diraclinien im Frequenzbereich an. Die Herleitung dieser wichtigen Beziehung folgt auf der nächsten Seite.
+
Here,&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; is the distance between two adjacent Dirac delta lines in the frequency domain. }}
Das Ergebnis besagt:
 
*Die Fouriertransformierte eines Diracpulses $p_{\delta}(t)$ ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  ⇒  $P_{\delta}(f)$.
 
*Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen dem '''Reziprozitätsgesetz''':
 
 
   
 
   
$$T_{\rm A} \cdot f_{\rm A} = 1
 
\hspace{0.05cm}.$$
 
  
*Die Gewichte der einzelnen Diraclinien von $P_{\delta}(f)$ sind einheitlich gleich 1.
+
{{BlaueBox|TEXT=
 +
$\text{Proof:}$&nbsp; The derivation of the spectral function&nbsp; $P_{\delta}(f)$&nbsp;  given here is done in several steps:
  
 
+
'''(1)'''&nbsp;&nbsp; Since&nbsp; $p_{\delta}(t)$&nbsp; is periodic with the constant distance&nbsp; $T_{\rm A}$&nbsp; between two Dirac delta lines, the&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;complex Fourier series&laquo;]]&nbsp; can be applied:
{{Beispiel}}
 
 
 
[[File:P_ID1121__Sig_T_5_1_S3_NEU.png|250px|right|Diracpuls im Zeit- und Frequenzbereich]]
 
Die Grafik verdeutlicht die obigen Aussagen für $T_A = 50$ μs und $f_A = 1/T_A = 20$ kHz.
 
 
 
Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von $p_{\delta}(t)$ und $P_{\delta}(f)$.
 
 
 
{{end}}
 
 
 
 
 
 
 
Beweis der folgenden Forierkorrespondenz:
 
 
 
$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
\delta(t- \nu \cdot T_{\rm A}
 
)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
(f- \mu \cdot f_{\rm A}
 
).$$
 
 
   
 
   
{{Beweis}}
+
:$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
Die Herleitung der hier angegebenen Spektralfunktion $P_{\delta}(f)$ geschieht in mehreren Schritten:
+
  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }
Da $p_{\delta}(t)$ periodisch mit dem konstanten Abstand $T_A$ zwischen zwei Diraclinien ist, kann die (komplexe) Fourierreihendarstellung angewendet werden:
+
  \hspace{0.3cm}{\rm with}\hspace{0.3cm}
+
  D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2
$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
+
  }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}}
+
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
  \hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 
  D_{\mu} = \frac{1}{T_{\rm A}} \cdot \int_{-T_{\rm A}/2
 
  }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}
 
  \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
 
  
Im Integrationsbereich von $–T_A/2 bis +T_A/2$ gilt aber für den Diracpuls im Zeitbereich: $p_{\delta}(t) = T_A \cdot \delta(t)$. Damit kann für die komplexen Fourierkoeffizienten geschrieben werden:
+
'''(2)'''&nbsp;&nbsp; In the range from&nbsp; $-T_{\rm A}/2$&nbsp; to&nbsp; $+T_{\rm A}/2$&nbsp; holds for the Dirac comb in the time domain: &nbsp; $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$.&nbsp; Thus one can write for the complex Fourier coefficients: &nbsp;
$$D_{\mu} = \int_{-T_{\rm A}/2
+
:$$D_{\mu} = \int_{-T_{\rm A}/2
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}
+
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
  \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
+
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
Unter Berücksichtigung der Tatsache, dass für $t \neq 0$ der Diracimpuls gleich 0 ist und für $t = 0$ der komplexe Drehfaktor gleich 1, gilt weiter:
+
'''(3)'''&nbsp;&nbsp; Considering that for&nbsp; $t \neq 0$&nbsp; the Dirac delta is zero and for&nbsp; $t = 0$&nbsp; the complex rotation factor is equal to&nbsp; $1$,&nbsp; it holds further:
$$D_{\mu} = \int_{-T_{\rm A}/2
+
:$$D_{\mu} = \int_{- T_{\rm A}/2
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} {\rm e}^{{\rm j} \hspace{0.05cm}
+
p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm}
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.05cm}.$$  
+
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}.
Der Verschiebungssatz im Frequenzbereich lautet mit $f_A = 1/T_A$:
+
$$
$${\rm e}^{{\rm j} \hspace{0.05cm}
+
'''(4)'''&nbsp;&nbsp; The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;shifting theorem in the frequency domain&laquo;]]&nbsp; with&nbsp; $f_{\rm A} = 1/T_{\rm A}$:
\cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
+
:$${\rm e}^{ {\rm j} \hspace{0.05cm}
 +
\hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
 
  f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  \delta
 
  \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$  
 
  )\hspace{0.05cm}.$$  
Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:
+
'''(5)'''&nbsp;&nbsp; If you apply this result to each individual summand,&nbsp; you finally get:
 
   
 
   
$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
+
:$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
 +
<div align="right">q.e.d.</div>}}
 +
 +
 +
The result states:
 +
#The Dirac comb&nbsp; $p_{\delta}(t)$&nbsp; in the time domain consists of infinitely many Dirac deltas,&nbsp; each at the same distance&nbsp; $T_{\rm A}$&nbsp; and all with the same impulse weight&nbsp; $T_{\rm A}$.
 +
#The Fourier transform of&nbsp; $p_{\delta}(t)$&nbsp; gives again a Dirac comb,&nbsp; but now in the frequency range &nbsp; ⇒ &nbsp; $P_{\delta}(f)$.
 +
#$P_{\delta}(f)$&nbsp; also consists of infinitely many Dirac deltas,&nbsp; but now in the respective distance&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; and all with impulse weights&nbsp; $1$.
 +
#The distances of the Dirac delta lines in the time and frequency domain representation thus follow the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;reciprocity theorem&raquo;]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
 +
 +
 +
{{GraueBox|TEXT=
 +
[[File:EN_Sig_T_5_1_S3.png|right|frame|Dirac comb in time and frequency domain]]
 +
 +
$\text{Example 1:}$&nbsp; The graph illustrates the above statements for
 +
*$T_{\rm A} = 50\,{\rm &micro;s}$,
  
<div align="right">q.e.d.</div>
+
*$f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .
  
{{end}}
 
  
  
Das bedeutet:
 
*Der Diracpuls $p_{\delta}(t)$ im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand TA und alle mit gleichem Impulsgewicht $T_A$.
 
*Auch der Diracpuls $P_{\delta}(f)$ im Frequenzbereich besteht aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand $f_A = 1/T_A$ und alle mit dem Impulsgewicht 1.
 
  
  
 +
&rArr; &nbsp; One can also see from this sketch the different impulse weights of&nbsp; $p_{\delta}(t)$&nbsp; and&nbsp; $P_{\delta}(f)$.}}
  
==Frequenzbereichsdarstellung==
 
  
Zum Spektrum von $x_A(t)$ kommt man durch Anwendung des Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltungsoperation im Spektralbereich entspricht:
+
==Frequency domain representation==
 +
<br>
 +
The spectrum of the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained by applying the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_frequency_domain|&raquo;Convolution Theorem in the frequency domain&laquo;]].&nbsp; This states that multiplication in the time domain corresponds to convolution in the spectral domain:
 
   
 
   
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
+
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  
Aus dem Spektrum $X(f)$ wird durch Faltung mit der um $\mu \cdot f_A$ verschobenen Diraclinie:
+
*From the spectrum&nbsp; $X(f)$&nbsp; by convolution with the Dirac delta line shifted by&nbsp; $\mu \cdot f_{\rm A}$&nbsp; we get:
 
   
 
   
$$X(f) \star \delta
+
:$$X(f) \star \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )= X (f- \mu \cdot f_{\rm A}
 
  )= X (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
+
*Applying this result to all Dirac delta lines of the Dirac comb,&nbsp; we finally obtain:
 
   
 
   
$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
+
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A}
 
  ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Das heißt: Die Abtastung des analogen Zeitsignals $x(t)$ in äquidistanten Abständen $T_A$ führt im Spektralbereich zu einer '''periodischen Fortsetzung''' von $X(f)$ mit dem Frequenzabstand $f_A = 1/T_A$.
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; The sampling of the analog time signal&nbsp; $x(t)$&nbsp; at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; leads in the spectral domain to a&nbsp; '''periodic continuation'''&nbsp; of&nbsp; $X(f)$&nbsp; with frequency spacing&nbsp; $f_{\rm A} = 1/T_{\rm A}$. }}
  
{{Beispiel}}
 
Die obere Grafik zeigt schematisch das Spektrum $X(f)$ eines analogen Signals $x(t)$, das Frequenzen bis 5 kHz beinhaltet.
 
  
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|250px|right|Spektrum des abgetasteten Signals]]
+
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp;
 +
The upper graph shows&nbsp; $($schematically!$)$&nbsp; the spectrum&nbsp; $X(f)$&nbsp; of an analog signal&nbsp; $x(t)$,&nbsp; which includes frequencies up to&nbsp; $5 \text{ kHz}$&nbsp;.
  
Tastet man das Signal mit der Abtastrate $f_A$ = 20 kHz, also im jeweiligen Abstand $T_A$ = 50 μs, ab, so erhält man das unten skizzierte periodische Spektrum $X_A(f)$. Da die Diracfunktionen unendlich schmal sind, beinhaltet $x_A(t)$ auch beliebig hochfrequente Anteile. Dementsprechend ist die Spektralfunktion $X_A(f)$ des abgetasteten Signals bis ins Unendliche ausgedehnt.
+
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|right|frame|Spectrum of the sampled signal]]
  
{{end}}
 
  
 +
Sampling the signal at the sampling rate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$,&nbsp; i.e. at the respective distance&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; we obtain the periodic spectrum&nbsp; $X_{\rm A}(f)$&nbsp; sketched below.
  
==Signalrekonstruktion==
+
*Since the Dirac delta functions are infinitely narrow,&nbsp; the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; also contains arbitrary high-frequency components.
  
Die Signalabtastung ist bei einem digitalen Nachrichtenübertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden. Betrachten wir zum Beispiel das folgende System:
+
*Accordingly,&nbsp; the spectral function&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal is extended to infinity.}}
  
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|300px|right|Signalabtastung und -rekonstruktion]]
 
  
Das Analogsignal $x(t)$ mit Bandbreite $B_{NF}$ wird wie oben beschrieben abgetastet. Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal $y_A(t) = x_A(t)$ vor. Die Frage ist nun, wie der Block '''Signalrekonstruktion''' zu gestalten ist, damit auch $y(t) = x(t)$ gilt.
+
==Signal reconstruction==
 +
<br>
 +
Signal sampling is not an end in itself in a digital transmission system;&nbsp; it must be reversed at some point.&nbsp; Consider,&nbsp; for example,&nbsp; the following system:
  
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|300px|right|Frequenzbereichsdarstellung der Signalrekonstruktion]]
+
[[File:EN_Sig_T_5_1_S2_v2.png|right|frame|Sampling and reconstruction of a signal]]
  
Die Lösung ist relativ einfach, wenn man die Spektralfunktionen betrachtet. Man erhält aus $Y_A(f)$ das Spektrum $Y(f) = X(f)$ durch einen Tiefpass mit dem Frequenzgang $H(f)$, der
+
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequency domain representation of the signal reconstruction process]]
*die tiefen Frequenzen unverfälscht durchlässt:
 
$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
 
  NF}\hspace{0.05cm},$$
 
*die hohen Frequenzen vollständig unterdrückt:
 
$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 
  NF}\hspace{0.05cm}.$$
 
Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang $H(f)$ im Bereich von $B_{NF}$ bis $f_A–B_{NF}$ beliebig geformt sein kann, beispielsweise linear abfallend (gestrichelter Verlauf) oder auch rechteckförmig, solange die zwei oben genannten Bedingungen erfüllt sind.
 
  
 +
*The analog signal&nbsp; $x(t)$&nbsp; with bandwidth&nbsp; $B_{\rm NF}$&nbsp; is sampled as described above.
 +
 +
*At the output of an ideal transmission system,&nbsp; the&nbsp; likewise discrete-time signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is present.
 +
 +
*The question now is how the block&nbsp; &raquo;'''signal reconstruction'''&laquo;&nbsp; is to be designed so that&nbsp; $y(t) = x(t)$&nbsp; applies.
  
==Das Abtasttheorem==
 
  
Die vollständige Rekonstruktion des Analogsignals $y(t)$ aus dem abgetasteten Signal $y_A(t) = x_A(t)$ ist nur möglich, wenn die Abtastrate $f_A$ entsprechend der Bandbreite $B_{NF}$ des Nachrichtensignals richtig gewählt wurde. Aus der Grafik der letzten Seite erkennt man, dass folgende Bedingung erfüllt sein muss:
+
The solution is simple if one considers the spectral functions:&nbsp;
  
$$f_{\rm A} - B_{\rm   NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$$
+
One obtains from&nbsp; $Y_{\rm A}(f)$&nbsp; the spectrum&nbsp; $Y(f) = X(f)$&nbsp; by a low-pass with&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|&raquo;frequency response&laquo;]]&nbsp; $H(f)$, which&nbsp;
 +
*passes the low frequencies unaltered:
 +
:$$H(f) = 1 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \le B_{\rm
 +
   NF}\hspace{0.05cm},$$
 +
*suppresses the high frequencies completely:
 +
:$$H(f) = 0 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 +
   NF}\hspace{0.05cm}.$$
 
   
 
   
{{Satz}}
+
Further it can be seen from the graph that the frequency response&nbsp; $H(f)$&nbsp;  can be arbitrarily shaped in the range of&nbsp; $B_{\rm NF}$&nbsp; to&nbsp; $f_{\rm A}-B_{\rm NF}$,&nbsp; <br>as long as both of the above conditions are met,
'''Abtasttheorem''': Besitzt ein Analogsignal $x(t)$ nur Spektralanteile im Bereich $|f| < B_{NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate $f_A ≥ 2 \cdot B_{NF}$ beträgt. Für den Abstand zweier Abtastwerte muss demnach gelten:
+
*e.g.,&nbsp; linearly sloping&nbsp; $($dashed line$)$  
+
*or rectangular-in-frequency.
$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm   NF}}\hspace{0.05cm}.$$
+
 
{{end}}
 
  
 +
<br clear=all>
 +
==Sampling theorem==
 +
<br>
 +
The complete reconstruction of the analog signal&nbsp; $y(t)$&nbsp; from the sampled signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is only possible if the sampling rate&nbsp; $f_{\rm A}$&nbsp;  has been chosen correctly corresponding to the bandwidth&nbsp; $B_{\rm NF}$&nbsp; of the source signal.
  
Wird bei der Abtastung der größtmögliche Wert  ⇒  $T_A = 1/(2B_{NF})$ herangezogen, so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz $f_G = f_A/2 = 1/(2T_A)$ verwendet werden.
+
From the graph in the&nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Signal_reconstruction|&raquo;last section&laquo;]]&nbsp;, it can be seen that the following condition must be fulfilled:
  
{{Beispiel}}
+
:$$f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm  NF}\hspace{0.05cm}.$$
Die Grafik zeigt oben das auf $\pm 5$ kHz begrenzte Spektrum $X(f)$ eines Analogsignals, unten das Spektrum $X_A(f)$ des im Abstand $T_A$ = 100 μs abgetasteten Signals ⇒  $f_A$ = 10 kHz. Zusätzlich eingezeichnet ist der Frequenzgang $H(f)$ des Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz $f_G = f_A/2 =$ 5 kHz betragen muss. Mit jedem anderen $f_G$–Wert ergibt sich $Y(f) \neq X(f)$. Bei $f_G < 5$ kHz fehlen die oberen $X(f)$–Anteile, während es bei $f_G > 5$ kHz aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in $Y(f)$ kommt.
+
 +
{{BlaueBox|TEXT=
 +
$\text{Sampling Theorem:}$&nbsp;
  
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|250px|right|Abtasttheorem im Frequenzbereich]]
+
*If an analog signal&nbsp; $x(t)$&nbsp; has spectral components in the range&nbsp; $\vert f \vert < B_{\rm NF}$,&nbsp; it only can be completely reconstructed from its sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; if the sampling rate at the transmitter was sufficiently large:
 +
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$
 +
*Accordingly, the following must apply to the distance between two samples:
 +
 +
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
  
Wäre die Abtastung beim Sender mit einer Abtastrate $f_A < 10$ kHz erfolgt  ⇒  $T_A > 100$ μs, so wäre das Analogsignal $y(t)$ aus den Abtastwerten $y_A(t)$ auf keinen Fall rekonstruierbar.
 
  
{{end}}
+
If the largest possible value &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; is used for sampling,&nbsp; then,&nbsp; in order to reconstruct the analog signal from its sampled values,&nbsp; one must use an ideal,&nbsp; rectangular low-pass filter with cut-off frequency&nbsp;
 +
:$$f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A}).$$
  
 +
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp; The upper graph shows the spectrum&nbsp; $X(f)$&nbsp;  of an analog signal limited to&nbsp; $\pm\text{ 5 kHz}$.&nbsp; Below you see the spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal with&nbsp;
 +
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Sampling theorem in the frequency domain]]
 +
:$$T_{\rm A} =\,\text{ 100 &micro;s} &nbsp; \ ⇒ \ &nbsp;  f_{\rm A}=\,\text{ 10 kHz}.$$
 +
Additionally drawn is the frequency response&nbsp; $H(f)$&nbsp; of the low-pass filter for signal reconstruction.&nbsp; The cut-off frequency must be
 +
:$$f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}.$$
  
''Hinweis'': Zu der im Kapitel 5 behandelten Thematik gibt es ein Interaktionsmodul:
+
With any other&nbsp; $f_{\rm G}$ value, the result would be&nbsp; $Y(f) \neq X(f)$:  
Abtastung analoger Signale und Signalrekonstruktion
+
#For&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; the upper&nbsp; $X(f)$ parts are missing.
 +
# For&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; there are unwanted spectral components in&nbsp; $Y(f)$&nbsp; due to convolution operations.
  
===Aufgaben===
 
  
[[Aufgaben:5.1 Abtasttheorem]]
+
If the sampling at the transmitter had been done with sampling rate
 +
:$$f_{\rm A} < 10\,\text{ kHz}&nbsp; &nbsp;\ ⇒ \ &nbsp; T_{\rm A} >100 \,{\rm &micro;  s},$$
  
 +
the analog signal&nbsp; $y(t) = x(t)$&nbsp; would not be reconstructible from the samples&nbsp; $y_{\rm A}(t)$&nbsp; in any case.
  
 +
<u>Note:</u> &nbsp;  There is an interactive applet on the topic covered here: &nbsp; [[Applets:Sampling_of_Analog_Signals_and_Signal_Reconstruction|&raquo;Sampling of Analog Signals and Signal Reconstruction&laquo;]].}}
  
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise 5.1: Sampling Theorem|Exercise 5.1: Sampling Theorem]]
  
 +
[[Aufgaben:Exercise 5.1Z: Sampling of Harmonic Oscillations|Exercise 5.1Z: Sampling of Harmonic Oscillations]]
 +
 
 +
 
{{Display}}
 
{{Display}}

Latest revision as of 14:51, 22 June 2023

# OVERVIEW OF THE FIFTH MAIN CHAPTER #


A prerequisite for the system-theoretical investigation of digital systems or for their computer simulation is a suitable discrete-time signal description. 

This chapter clarifies the mathematical transition from continuous-time to discrete-time signals,  starting from the  »Fourier transform theorems«.

The chapter includes in detail:

  1. The  »time and frequency domain representation«  of discrete-time signals,
  2. the  »sampling theorem«,  which must be strictly observed in time discretization,
  3. the  »reconstruction of the analog signal«  from the discrete-time representation,
  4. the  »discrete Fourier transform«  $\rm (DFT)$  and its inverse  $\rm (IDFT)$,
  5. the  »possibilities for error«  when applying DFT and IDFT,
  6. the application of  »spectral analysis«  to the improvement of metrological procedures,  and
  7. the  »FFT algorithm«  particularly suitable for computer implementation.


Principle and motivation


Many source signals are analog and thus simultaneously  »continuous-time«  and  »continuous–valued«.  If such an analog signal is to be transmitted by means of a digital system,  the following preprocessing steps are required:

  • the  »sampling«  of the source signal  $x(t)$,  which is expediently – but not necessarily – performed at equidistant times   ⇒   »time discretization«,
  • the  »quantization«  of the samples,  so as to limit the number  $M$  of possible values to a finite value   ⇒   »value discretization«.


Quantization is not discussed in detail until the chapter  »Pulse Code Modulation«  of the book  "Modulation Methods".

On time discretization of the continuous-time signal  $x(t)$

In the following,  we use the following nomenclature to describe the sampling:

  • Let the continuous-time signal be  $x(t)$.  Let the signal sampled at equidistant intervals  $T_{\rm A}$  be  $x_{\rm A}(t)$.
$$\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .$$
  • Outside the sampling time points  $\nu \cdot T_{\rm A}$  always holds  $x_{\rm A}(t) = 0$.  At the equidistant sampling times,  the result is with the constant  $K$:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  • $K$  depends on the time discretization type.  For the sketch:  $K = 1$.

Time domain representation


$\text{Definition:}$  »sampling«  shall be understood as the multiplication of the continuous-time signal  $x(t)$  by the  »Dirac comb«  $p_{\delta}(t)$:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$


It should be noted that other description forms are found in the literature.  However,  to the authors,  the form chosen here appears to be the most appropriate in terms of spectral representation and derivation of the  »Discrete Fourier Transform«  $\rm (DFT)$.

$\text{Definition:}$  The  »Dirac comb«  $($in the time domain$)$  consists of infinitely many Dirac deltas,  each equally spaced  $T_{\rm A}$  and all with equal impulse weight  $T_{\rm A}$:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • Sometimes  $p_{\delta}(t)$  is also called  »impulse train«  or  »sampling function«.
  • The additional multiplication by  $T_{\rm A}$  is necessary so that  $x(t)$  and  $x_{\rm A}(t)$  have the same unit.  Note here that  $\delta (t)$  itself has the unit  "1/s".


Based on this definition,  the sampled signal  $x_{\rm A}(t)$  has the following properties:

  1. The sampled signal at the considered time  $(\nu \cdot T_{\rm A})$  is equal to  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) \cdot \delta (0)$.
  2. Since the Dirac delta function  $\delta (t)$  is infinite at time  $t = 0$  all signal values  $x_{\rm A}(\nu \cdot T_{\rm A})$  are also infinite.
  3. Thus,  the factor  $K$  introduced in the last section is actually infinite as well.
  4. However,  two samples  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  and  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  differ in the same proportion as the signal values  $x(\nu_1 \cdot T_{\rm A})$  and  $x(\nu_2 \cdot T_{\rm A})$.
  5. The samples of  $x(t)$  appear in the weights of the Dirac delta functions:
$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

The following sections will show that these equations,  which take some getting used to,  do lead to reasonable results,  if they are applied consistently.

Dirac comb in time and frequency domain


$\text{Theorem:}$  Developing the  »Dirac comb«  into a  »Fourier series«   and transforming it into the frequency domain using the  »shifting theorem«  gives the following Fourier correspondence:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$

Here,  $f_{\rm A} = 1/T_{\rm A}$  is the distance between two adjacent Dirac delta lines in the frequency domain.


$\text{Proof:}$  The derivation of the spectral function  $P_{\delta}(f)$  given here is done in several steps:

(1)   Since  $p_{\delta}(t)$  is periodic with the constant distance  $T_{\rm A}$  between two Dirac delta lines, the  »complex Fourier series«  can be applied:

$$p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} } \hspace{0.3cm}{\rm with}\hspace{0.3cm} D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(2)   In the range from  $-T_{\rm A}/2$  to  $+T_{\rm A}/2$  holds for the Dirac comb in the time domain:   $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$.  Thus one can write for the complex Fourier coefficients:  

$$D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(3)   Considering that for  $t \neq 0$  the Dirac delta is zero and for  $t = 0$  the complex rotation factor is equal to  $1$,  it holds further:

$$D_{\mu} = \int_{- T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm} p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}. $$

(4)   The  »shifting theorem in the frequency domain«  with  $f_{\rm A} = 1/T_{\rm A}$:

$${\rm e}^{ {\rm j} \hspace{0.05cm} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

(5)   If you apply this result to each individual summand,  you finally get:

$$P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
q.e.d.


The result states:

  1. The Dirac comb  $p_{\delta}(t)$  in the time domain consists of infinitely many Dirac deltas,  each at the same distance  $T_{\rm A}$  and all with the same impulse weight  $T_{\rm A}$.
  2. The Fourier transform of  $p_{\delta}(t)$  gives again a Dirac comb,  but now in the frequency range   ⇒   $P_{\delta}(f)$.
  3. $P_{\delta}(f)$  also consists of infinitely many Dirac deltas,  but now in the respective distance  $f_{\rm A} = 1/T_{\rm A}$  and all with impulse weights  $1$.
  4. The distances of the Dirac delta lines in the time and frequency domain representation thus follow the  »reciprocity theorem»:   $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$


Dirac comb in time and frequency domain

$\text{Example 1:}$  The graph illustrates the above statements for

  • $T_{\rm A} = 50\,{\rm µs}$,
  • $f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .



⇒   One can also see from this sketch the different impulse weights of  $p_{\delta}(t)$  and  $P_{\delta}(f)$.


Frequency domain representation


The spectrum of the sampled signal  $x_{\rm A}(t)$  is obtained by applying the  »Convolution Theorem in the frequency domain«.  This states that multiplication in the time domain corresponds to convolution in the spectral domain:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  • From the spectrum  $X(f)$  by convolution with the Dirac delta line shifted by  $\mu \cdot f_{\rm A}$  we get:
$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
  • Applying this result to all Dirac delta lines of the Dirac comb,  we finally obtain:
$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

$\text{Conclusion:}$  The sampling of the analog time signal  $x(t)$  at equidistant intervals  $T_{\rm A}$  leads in the spectral domain to a  periodic continuation  of  $X(f)$  with frequency spacing  $f_{\rm A} = 1/T_{\rm A}$.


$\text{Example 2:}$  The upper graph shows  $($schematically!$)$  the spectrum  $X(f)$  of an analog signal  $x(t)$,  which includes frequencies up to  $5 \text{ kHz}$ .

Spectrum of the sampled signal


Sampling the signal at the sampling rate  $f_{\rm A}\,\text{ = 20 kHz}$,  i.e. at the respective distance  $T_{\rm A}\, = {\rm 50 \, µs}$  we obtain the periodic spectrum  $X_{\rm A}(f)$  sketched below.

  • Since the Dirac delta functions are infinitely narrow,  the sampled signal  $x_{\rm A}(t)$  also contains arbitrary high-frequency components.
  • Accordingly,  the spectral function  $X_{\rm A}(f)$  of the sampled signal is extended to infinity.


Signal reconstruction


Signal sampling is not an end in itself in a digital transmission system;  it must be reversed at some point.  Consider,  for example,  the following system:

Sampling and reconstruction of a signal
Frequency domain representation of the signal reconstruction process
  • The analog signal  $x(t)$  with bandwidth  $B_{\rm NF}$  is sampled as described above.
  • At the output of an ideal transmission system,  the  likewise discrete-time signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is present.
  • The question now is how the block  »signal reconstruction«  is to be designed so that  $y(t) = x(t)$  applies.


The solution is simple if one considers the spectral functions: 

One obtains from  $Y_{\rm A}(f)$  the spectrum  $Y(f) = X(f)$  by a low-pass with  »frequency response«  $H(f)$, which 

  • passes the low frequencies unaltered:
$$H(f) = 1 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • suppresses the high frequencies completely:
$$H(f) = 0 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Further it can be seen from the graph that the frequency response  $H(f)$  can be arbitrarily shaped in the range of  $B_{\rm NF}$  to  $f_{\rm A}-B_{\rm NF}$, 
as long as both of the above conditions are met,

  • e.g.,  linearly sloping  $($dashed line$)$
  • or rectangular-in-frequency.



Sampling theorem


The complete reconstruction of the analog signal  $y(t)$  from the sampled signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is only possible if the sampling rate  $f_{\rm A}$  has been chosen correctly corresponding to the bandwidth  $B_{\rm NF}$  of the source signal.

From the graph in the  »last section« , it can be seen that the following condition must be fulfilled:

$$f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$$

$\text{Sampling Theorem:}$ 

  • If an analog signal  $x(t)$  has spectral components in the range  $\vert f \vert < B_{\rm NF}$,  it only can be completely reconstructed from its sampled signal  $x_{\rm A}(t)$  if the sampling rate at the transmitter was sufficiently large:
$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$
  • Accordingly, the following must apply to the distance between two samples:
$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


If the largest possible value   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  is used for sampling,  then,  in order to reconstruct the analog signal from its sampled values,  one must use an ideal,  rectangular low-pass filter with cut-off frequency 

$$f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A}).$$

$\text{Example 3:}$  The upper graph shows the spectrum  $X(f)$  of an analog signal limited to  $\pm\text{ 5 kHz}$.  Below you see the spectrum  $X_{\rm A}(f)$  of the sampled signal with 

Sampling theorem in the frequency domain
$$T_{\rm A} =\,\text{ 100 µs}   \ ⇒ \   f_{\rm A}=\,\text{ 10 kHz}.$$

Additionally drawn is the frequency response  $H(f)$  of the low-pass filter for signal reconstruction.  The cut-off frequency must be

$$f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}.$$

With any other  $f_{\rm G}$ value, the result would be  $Y(f) \neq X(f)$:

  1. For  $f_{\rm G} < 5\,\text{ kHz}$  the upper  $X(f)$ parts are missing.
  2. For  $f_{\rm G} > 5\,\text{ kHz}$  there are unwanted spectral components in  $Y(f)$  due to convolution operations.


If the sampling at the transmitter had been done with sampling rate

$$f_{\rm A} < 10\,\text{ kHz}   \ ⇒ \   T_{\rm A} >100 \,{\rm µ s},$$

the analog signal  $y(t) = x(t)$  would not be reconstructible from the samples  $y_{\rm A}(t)$  in any case.

Note:   There is an interactive applet on the topic covered here:   »Sampling of Analog Signals and Signal Reconstruction«.


Exercises for the chapter


Exercise 5.1: Sampling Theorem

Exercise 5.1Z: Sampling of Harmonic Oscillations