Difference between revisions of "Signal Representation/The Fourier Transform and its Inverse"

From LNTwww
 
(132 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Aperiodische Signale - Implulse
+
|Untermenü=Aperiodic Signals - Impulses
|Vorherige Seite=Fourierreihe
+
|Vorherige Seite=Fourier Series
|Nächste Seite=Einige Sonderfälle impulsartiger Signale
+
|Nächste Seite=Special Cases of Impulse Signals
 
}}
 
}}
  
<html><script type="text/x-mathjax-config">
+
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
MathJax.Hub.Config({
+
<br>
  CommonHTML: { linebreaks: { automatic: true } },
+
In the second chapter periodic signals were described by different harmonic oscillations&nbsp; (&raquo;Fourier series&laquo;).&nbsp;
  "HTML-CSS": { linebreaks: { automatic: true } },
 
        SVG: { linebreaks: { automatic: true } }
 
});
 
</script>
 
</hmtl>
 
  
==Eigenschaften aperiodischer Signale==
+
If one reduces &ndash; at least mentally &ndash; the repetition frequency of a periodic signal more and more,&nbsp; i.e.,&nbsp; the period duration becomes longer and longer,&nbsp; then one comes from the periodic signal to the unique&nbsp; &raquo;aperiodic signal&laquo;&nbsp; &ndash; often also called&nbsp; &raquo;pulse&laquo;.
  
Im letzten Kapitel haben wir ''periodische Signale'' betrachtet. Das wesentliche Charakteristikum dieser Signale ist, dass für sie eine ''Periodendauer'' $T_0$ angegeben werden kann. Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat $T_0$ einen unendlich großen Wert, so spricht man von einem '''aperiodischen Signal'''.
+
In the following,&nbsp; such aperiodic and pulse&ndash;shaped signals are considered and mathematically described in the time and frequency domain.  
Für das gesamte Kapitel 3 sollen folgende Voraussetzungen gelten:
 
*Die betrachteten Signale $x(t)$ sind ''aperiodisch'' und ''energiebegrenzt'', das heißt, sie besitzen nur eine endliche Energie $E_x$ und eine vernachlässigbar kleine (mittlere) Leistung $P_x$.
 
*Im Allgemeinen konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von ''impulsförmigen'' Signalen spricht.
 
  
{{Beispiel}}
+
The chapter contains in detail:
Das folgende Bild zeigt einen Rechteckimpuls $x_1(t)$ mit Amplitude $A$ und Dauer $T$ als Beispiel eines aperiodischen und zeitlich begrenzten Signals. Dieser besitzt eine endliche Signalenergie ($E_1=A^2 \cdot T$) und die Leistung $P_1$ = 0.
+
# The derivation of the two&nbsp; &raquo;Fourier integrals&laquo;&nbsp; from the Fourier series,
 +
# the extension of the Fourier integral to the&nbsp; &raquo;Fourier transform&laquo;&nbsp; by means of distributions,
 +
# &raquo;some&nbsp; special cases&laquo;&nbsp; of pulses:&nbsp; &raquo;rectangular pulse&laquo;&nbsp; and&nbsp; &raquo;Gaussian pulse&laquo;,
 +
# the&nbsp; &raquo;laws&nbsp; of Fourier transform&laquo;,&nbsp; and finally
 +
# the meaning of the&nbsp; &raquo;convolution operation&laquo;&nbsp; and its various applications.
  
[[File:P_ID550__Sig_T_3_1_S1.png|250px|right|Energiebegrenztes und leistungsbegrenztes Signal]]
 
  
Ein leistungsbegrenztes Signal, z. B. das unten dargestellte Cosinussignal $x_1(t)$, besitzt dagegen
+
&raquo;Laplace transform&laquo;&nbsp; and&nbsp; &raquo;Hilbert transform&laquo;,&nbsp; which are only applicable to causal signals or systems,&nbsp; will be treated in the second book&nbsp; &raquo;Linear Time-invariant Systems&laquo;.
*stets eine endliche Leistung ($P_2=A^2/2$), und
 
*eine unendlich große Signalenergie ($E_2 \to \infty$).
 
  
{{end}}
 
  
  
==Genauere Betrachtung der Fourierkoeffizienten==
+
==Properties of aperiodic signals==
 +
<br>
 +
In the last chapter periodic signals were considered.&nbsp; The essential characteristic of these signals is,&nbsp; that you can specify a&nbsp; period duration&nbsp; $T_0$&nbsp; for them.&nbsp; If such a period duration cannot be indicated or &ndash; which is the same in practice &ndash; has an infinitely large value&nbsp; $T_0$,&nbsp; one speaks of an&nbsp; &raquo;aperiodic signal&laquo;.
 +
 
 +
For the present chapter&nbsp; &raquo;Aperiodic Signals &ndash; Pulses&raquo;&nbsp; the following conditions should apply:
 +
#The considered signals&nbsp; $x(t)$&nbsp; are&nbsp; aperiodic&nbsp; and&nbsp; "energy-limited": &nbsp; They possess a finite energy&nbsp; $E_x$&nbsp; and a negligible&nbsp; $($medium$)$&nbsp; power&nbsp; $P_x$.
 +
#Often the energy of these signals is concentrated on a relatively short time range,&nbsp; so that one also speaks of&nbsp; &raquo;pulse-like signals&laquo;&nbsp; or&nbsp; &raquo;pulses&laquo;.
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
[[File:P_ID550__Sig_T_3_1_S1.png|right|frame|Energy-limited signal&nbsp; $x_1(t)$&nbsp; and <br>power-limited signal&nbsp; $x_2(t)$]] 
 +
$\text{Example 1:}$&nbsp;
 +
The figure shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$&nbsp; as an example of an aperiodic and time-limited signal. This pulse has
 +
#the finite signal energy &nbsp; &rArr; &nbsp; here: &nbsp; $E_1=A^2 \cdot T$,&nbsp; and
 +
#the power&nbsp; $P_1=0$.
 +
 
 +
 
  
Wir gehen von einem periodischen Signal $x_P(t)$ mit der Periodendauer $T_0$ aus, das entprechend den Ausführungen im Kapitel 2.4 als (komplexe) Fourierreihe dargestellt werden kann:
 
 
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}.$$
 
  
Die Fourierkoeffizienten sind im Allgemeinen komplex, und es gilt $D_{-n}=D_n^\ast$:
+
A power-limited signal,&nbsp; for example the cosine signal&nbsp; $x_2(t)$&nbsp; shown below,&nbsp; has
+
#always a finite power &nbsp; &rArr; &nbsp; here: &nbsp; $P_2=A^2/2$,&nbsp; and
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
+
#thus also an infinitely large signal energy: &nbsp; $E_2 \to \infty$.}}
  
Wie bereits im Kapitel 2.4 gezeigt wurde, ist die dazugehörige Spektralfunktion $X_p(f)$ ein so genanntes Linienspektrum mit Spektrallinien im Abstand $f_0=1/T_0$:
 
 
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
 
  
Das Bild zeigt links das periodische Zeitsignal und rechts das zugehörige Betragsspektrum.
+
==Closer examination of the Fourier coefficients==
 +
<br>
 +
We assume a periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; with period duration&nbsp; $T_0$&nbsp; which corresponds to the explanations in section&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;Complex Fourier series&laquo;]].&nbsp;
 +
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|right|frame|Periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; and&nbsp; $x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; and its line spectra]]
 +
*This signal can be described as follows:
 +
:$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  
[[File:P_ID396__Sig_T_3_1_S2_rah.png|250px|right|Periodisches Signal und Linienspektrum (1)]]
+
*The Fourier coefficients are generally complex $($with&nbsp; $D_{-n}=D_n^\ast)$:
 +
 +
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  
Anzumerken ist, dass es sich hierbei lediglich um eine schematische Skizze handelt. Ist $x_P(t)$ eine reelle und gerade Funktion, so ist $X_P(f)$ ebenfalls reell und gerade. Die Gleichung $X_P(f) = |X_P(f)|$ gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.
+
*The corresponding spectral function&nbsp; $X_{\rm P}(f)$&nbsp; is a&nbsp; &raquo;line spectrum&laquo;&nbsp; with spectral lines in the distance&nbsp; $f_0=1/T_0$:
 +
 +
:$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  
Im unteren Bild ist ein weiteres periodisches Signal $x_P'(t)$ mit doppelter Periodendauer $T_0' = 2 \cdot T_0$ dargestellt. Bezüglich dieses Signals gilt:
+
*The upper figure shows on the left the periodic time signal&nbsp; $x_{\rm P}(t)$&nbsp; and on the right the corresponding magnitude spectrum&nbsp; $|X_{\rm P}(f)|$.&nbsp; This is merely a schematic sketch.
 +
 +
*If &nbsp; $x_{\rm P}(t)$&nbsp;is a real and even function, then&nbsp; $X_{\rm P}(f)$&nbsp; is also real and even.&nbsp; The equation&nbsp; $X_{\rm P}(f) = |X_{\rm P}(f)|$&nbsp; is only valid if all spectral lines are positive.
 +
<br clear=all>
 +
In the lower figure on the left side another periodic signal&nbsp; ${x_{\rm P}}\hspace{0.01cm}'(t)$&nbsp; with double period duration&nbsp; ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$&nbsp; is displayed.&nbsp; The following applies to this signal:
 
   
 
   
$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'}\, {\rm d}\it t.$$
+
:$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$
 +
 
 +
In the range from&nbsp; $-T_0/2$&nbsp; to&nbsp; $+T_0/2$&nbsp; the two signals&nbsp; $x_{\rm P}(t)$&nbsp; and &nbsp;$x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; are identical.&nbsp;
  
Im Bereich von $-T_0/2$ bis $+t_0/2$ sind die beiden Signale identisch.
+
We will also consider the spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; according to the right sketch:
 +
*Due to the double period duration&nbsp; $({T_0}' = 2 \cdot T_0)$&nbsp; the spectral lines are now closer together&nbsp; $({f_0}' = f_0/2)$.
  
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|250px|right|Periodisches Signal und Linienspektrum (2)]]
+
*Both red marked coefficients&nbsp; $D_n$&nbsp; und&nbsp; ${D_{2n}}'$ belong to the same physical frequency &nbsp; $f = n \cdot  f_0 = 2n \cdot {f_0}'$.
  
Betrachten wir auch hier die Spektralfunktion $X_P'(f)$:
 
Aufgrund der doppelten Periodendauer ($T_0' = 2 \cdot T_0$) liegen nun die Spektrallinien enger beisammen ($f_0' = f_0/2$).
 
Die beiden Koeffizienten $D_n$ und $D_{2n}'$ – im Bild rot hervorgehoben – gehören zur gleichen physikalischen Frequenz $f = n \cdot  f_0 = 2n \cdot f_0'$.
 
  
Durch Analyse der Koeffizienten
+
We recognize by a comparison of the two coefficients
 
   
 
   
$${D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  2 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t$$
+
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
  
erkennen wir:
+
#${x_{\rm P}}'(t) \equiv 0$ &nbsp; between&nbsp; $T_0/2$&nbsp; and&nbsp; ${T_0}'/2$&nbsp; and  also in a symmetrical interval for negative times.
*Zwischen $T_0/2$ und $T_0'/2$ ist $x_P'(t)$ identisch 0, ebenso im dazu symmetrischen Intervall bei negativen Zeiten. Deshalb können die Integrationsgrenzen auf $\pm T_0/2$ eingeschränkt werden.
+
#Therefore the integration limits can be restricted to&nbsp; $\pm T_0/2$.&nbsp;
*Innerhalb der neuen Integrationsgrenzen kann $x_P'(t)$ durch $x_P(t)$ ersetzt werden.
+
#Inside the new integration limits:&nbsp; ${x_{\rm P}}'(t)$&nbsp; can be replaced by&nbsp; $x_{\rm P}(t)$.
 +
#If we set&nbsp; ${T_0}' = 2T_0$&nbsp; in the above equation,&nbsp; we get:
 +
 +
:$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
  
Setzen wir nun in obiger Gleichung noch $T_0' = 2T_0$, so erhalten wir:
+
{{BlaueBox|TEXT= 
 +
$\text{We summarize this result briefly:}$&nbsp;
 +
*The spectral line of the signal&nbsp; ${x_{\rm P} }'(t)$&nbsp; at frequency&nbsp; $f = n \cdot {f_0}'$&nbsp; is denoted by&nbsp; ${D_{2n} }'$&nbsp; $($see lower graph on the right$)$.
 
   
 
   
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = \frac{D_n}{2}  .$$
+
*This line has exactly half the size of the spectral line&nbsp; $D_n$&nbsp; of the signal&nbsp; $x_{\rm P}(t)$&nbsp; at the same physical frequency&nbsp; $f$&nbsp; $($see upper graph  on the right$)$.
 +
 
 +
*The spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; has opposite&nbsp; $X_{\rm P}(f)$&nbsp; additional spectral lines at&nbsp; $(n + 1/2) \cdot f_0$&nbsp; $($see lower graph on the left$)$.
  
Fassen wir dieses Ergebnis kurz zusammen:
+
*These additional lines lead to the fact that in the time domain every second&nbsp; pulse&nbsp; of&nbsp; $x_{\rm P}(t)$&nbsp; &ndash; &nbsp; located by&nbsp; $n \cdot T_0$&nbsp; $(n$ odd$)$&nbsp; &ndash; &nbsp; is cancelled.}}
*Die Spektrallinie des Signals $x_P'(t)$ bei der Frequenz $f = n \cdot f_0'$ wird mit $D_{2n}'$ bezeichnet (untere Grafik). Diese Linie ist genau halb so groß wie die Spektrallinie $D_n$ des Signals $x_P(t)$ bei der gleichen physikalischen Frequenz $f$ (obere Grafik).
 
*Die Spektralfunktion $X_P'(f)$ weist gegenüber $X_P(f)$ zusätzliche Spektrallinien bei $(n + 1/2) \cdot f_0$ auf. Diese führen dazu, dass im Zeitbereich jeder zweite Impuls von $x_P(t)$ um $n \cdot T_0$ gelegen ($n$ ungeradzahlig) ausgelöscht wird.
 
  
  
  
==Vom periodischen zum aperiodischen Signal==
+
==From the periodic to the aperiodic signal==
Greifen wir nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer $T_0'$ von $x_P'(t)$ allgemein um einen ganzzahligen Faktor $k$ größer als die Periodendauer $T_0$ von $x_P(t)$. Dann können die bisherigen Aussagen verallgemeinert werden:
+
<br>
*Der Linienabstand ist bei $X_P'(f)$ um den Faktor $k$ geringer als beim Spektrum $X_P(f)$.
+
We now take up the considerations in the previous section and select the period duration&nbsp; ${T_0}'$&nbsp; of&nbsp; ${x_{\rm P}}'(t)$&nbsp; generally by an integer factor&nbsp; $k$&nbsp; greater than the period duration&nbsp; $T_0$&nbsp; of&nbsp; ${x_{\rm P}}(t)$.&nbsp; Then the previous statements can be generalized:
*Um diesen Sachverhalt hervorzuheben, bezeichnen wir die Frequenz-Laufvariable der Funktion $X_P'(f)$ mit $v$ anstelle von $n$. Es gilt: $v=k \cdot n$.
 
*Für die Spektrallinie des Signals $X_P'(f)$ bei der Frequenz $f=n \cdot f_0 = v \cdot f_0'$ gilt:
 
 
$${D_\nu}' = \frac{1}{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n .$$
 
  
[[File:P_ID398__Sig_T_3_1_S3_rah.png|250px|right|Vom periodischen zum aperiodischen Signal]]
+
[[File:P_ID398__Sig_T_3_1_S3_rah.png|right|frame|From the periodic to the aperiodic signal]]
 +
*The line spacing is smaller for&nbsp; ${X_{\rm P}}'(f)$&nbsp; by the factor&nbsp; $k$&nbsp; than for the spectrum&nbsp; ${X_{\rm P}}(f)$.
  
Wählt man nun – wie im Bild schematisch dargestellt – den Faktor $k$ und damit die Periodendauer $T_0'$ immer größer und lässt sie schließlich nach unendlich gehen, so
+
*To emphasize this fact,&nbsp; we denote the discrete frequency variable of function&nbsp; ${X_{\rm P}}'(f)$&nbsp; with&nbsp; $\nu$&nbsp; instead of&nbsp; $n$.&nbsp; The following applies: &nbsp;
*geht das periodische Signal $x_P(t)$ in das aperiodische Signal $x(t)$ über,
+
:$$\nu=k \cdot n.$$
*kann man das Linienspektrum $X_P(f)$ durch das kontinuierliche Spektrum $X(f)$ ersetzen.
+
*It applies for the red marked spectral line of signal&nbsp; ${x_{\rm P}}'(t)$&nbsp; at frequency&nbsp; $f=n \cdot f_0 =\nu \cdot {f_0}'$:
 +
:$${D_\nu}' = {1}/{k} \cdot D_n.$$
  
 +
*If one now chooses &nbsp; &ndash; &nbsp; as shown schematically in the graph &nbsp; &ndash; &nbsp; the factor&nbsp; $k$&nbsp; and thus the period duration&nbsp; ${T_0}'$&nbsp; always larger and finally lets it go to infinity,&nbsp; then
 +
# the periodic signal&nbsp; ${x_{\rm P}}(t)$&nbsp; changes to the aperiodic signal&nbsp; $x(t)$,
 +
#the line spectrum&nbsp; ${X_{\rm P}}(f)$&nbsp; can be replaced by the continuous spectrum&nbsp; $X(f)$.
 +
<br clear=all>
 +
==The first Fourier integral==
 +
<br>
 +
Concerning the spectral functions&nbsp; $X_{\rm P}(f)$&nbsp; and&nbsp; $X(f)$&nbsp; the following statements can be made:
 +
*The individual spectral lines now lie as close together as desired&nbsp; $({f_0}'=1/{T_0}' \to 0)$.
  
==Das erste Fourierintegral==
+
*In the spectral function&nbsp; $X(f)$&nbsp; all possible&nbsp; $($not only discrete$)$&nbsp; frequencies now occur within certain intervals &nbsp; &rArr; &nbsp; $X(f)$&nbsp; is no longer a line spectrum.
  
Bezüglich den Spektralfunktion $X_P(f)$ und $X(f)$ lassen sich somit folgende Aussagen machen:
+
*The contribution of each individual frequency&nbsp; $f$&nbsp; to the signal&nbsp; $x(t)$&nbsp;is negligibly small&nbsp; $(k \to \infty,\ {D_{\nu}}' \to 0)$.
*Die einzelnen Spektrallinien liegen nun beliebig eng beieinander ($f_0'=1/T_0' \to 0$).
 
*In der Spektralfunktion $X(f)$ treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf; $X(f)$ stellt also kein Linienspektrum mehr dar.
 
*Der Beitrag einer jeden einzelnen Frequenz $f$ zum Signal ist nur verschwindend gering ($k \to \infty, D_v' \to 0$). Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
 
*Anstatt die Fourierkoeffizienten $D_v'$ zu berechnen, wird nun stattdessen eine spektrale Dichte $X(f)$ ermittelt. Bei der Frequenz $f=v \cdot f_0'$ gilt dann:
 
 
   
 
   
$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}')$ .
+
*Because of the infinite number of frequencies there is a finite result in total.
  
*Die Spektralfunktion (Dichte) $X(f)$ des aperiodischen Signals $x(t)$ ist im Spektrum $X_P(f)$ des vergleichbaren periodischen Signals $x_P(t)$ als Einhüllende erkennbar (siehe Grafiken).
+
*Instead of calculating the Fourier coefficients&nbsp; ${D_{\nu}}'$:&nbsp; Now a spectral density&nbsp; $X(f)$&nbsp; is calculated.&nbsp; For the frequency&nbsp; $f=\nu\cdot {f_0}'$&nbsp; then applies:
*In der unteren Grafik entspricht $D_v'$ der rot hinterlegten Fläche des Frequenzintervalls um $v \cdot f_0'$ mit der Breite $f_0'$.
+
 +
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
 +
*The spectral function&nbsp; $X(f)$&nbsp; of the aperiodic signal&nbsp; $x(t)$&nbsp; is visible in the spectrum&nbsp; $X_{\rm P}(f)$&nbsp; of the periodic signal&nbsp; $x_{\rm P}(t)$ as envelope&nbsp; $($see graphics in the last section$)$.
  
 +
*In the lower graphic&nbsp; ${D_{\nu}}'$&nbsp; corresponds to the red-shaded area of the frequency interval around&nbsp; $\nu \cdot {f_0}'$&nbsp; with width ${f_0}'$.
  
Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:
+
 
 +
If you use the equations given in the last section, you get
 
   
 
   
$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$
+
:$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
  
Durch den gemeinsamen Grenzübergang ($T_0' \to \infty, f_0' \to 0$) wird nun
+
Through the common limit crossing &nbsp; $({T_0}' \to \infty, \ {f_0}' \to 0)$&nbsp; the following transformations will happen:
*aus dem periodischen Signal $x_P(t)$ das aperiodische Signal $x(t)$, und
+
#From the periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; to the aperiodic signal&nbsp; $x(t)$.
*aus der diskreten Frequenz $v \cdot f_'$ die kontinuierliche Frequenzvariable $f$.
+
#From the discrete frequency&nbsp; $\nu \cdot {f_0}'$&nbsp; to the continuous frequency variable&nbsp; $f$.
  
Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht. Der Name dieser Spektraltransformation geht auf den französischen Physiker Jean-Baptiste-Joseph Fourier zurück.
 
  
{{Definition}}
+
Thus,&nbsp; a fundamental definition is obtained,&nbsp; which allows the calculation of the spectral function of an aperiodic time function.&nbsp; The name of this spectral transformation goes back to the French physicist&nbsp; [https://en.wikipedia.org/wiki/Joseph_Fourier &raquo;$\text{Jean-Baptiste Joseph Fourier}$&laquo;].
Die Spektralfunktion (oder kurz: das Spektrum) eines aperiodischen und gleichzeitig energiebegrenzten Signals $x(t)$ ist wie folgt zu berechnen:
 
  
$X(f)= \hspace{0.05cm}\int \limits_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t$
+
{{BlaueBox|TEXT= 
 +
$\text{First Fourier Integral:}$&nbsp;
  
      ⇒    Erstes Fourierintegral.
+
The&nbsp; &raquo;'''spectral function'''&laquo;&nbsp; $($or short:&nbsp; the&nbsp;  &raquo;'''spectrum'''&laquo;$)$&nbsp; of an aperiodic and simultaneously energy limited signal&nbsp; $x(t)$&nbsp; is to be calculated as follows
{{end}}
 
  
 +
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$}}
  
Das nachfolgende Lernvideo soll Ihnen die Aussagen der letzten Seiten nochmals verdeutlichen:
 
Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren
 
(Dauer Teil 1: 6:20 – Teil 2: 5:15)
 
  
 +
The following&nbsp; $($German language$)$&nbsp; learning video should clarify the statements of the last sections:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|&raquo;Kontinuierliche und diskrete Spektren&laquo;]] &nbsp; &rArr; &nbsp; "Continuous and discrete spectra".
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
Given is the sketched time course&nbsp; $x(t)$.&nbsp; The corresponding spectrum&nbsp; $X(f)$&nbsp; is searched for using the first Fourier integral:
 +
[[File:P_ID330__Sig_T_3_1_S5_neu.png|right|frame|Rectangular pulse&nbsp; $x(t)$]]
 +
*From the above representation we can see,&nbsp; that for&nbsp; $\vert t \vert > T/2$&nbsp; the signal is&nbsp; $x(t) = 0$.
 +
 +
*This means that the integration interval can be limited to the range&nbsp; $\pm T/2$.
 +
 +
*This results in the approach:
 +
 +
:$$ \begin{align*} X(f) & =  A \cdot  \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t  = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2}  \\ & =  \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
  
==Beispiel zum ersten Fourierintegral==
+
:$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
{{Beispiel}}
 
Gegeben ist der skizzierte Zeitverlauf $x(t)$. Gesucht ist das zugehörige Spektrum $X(f)$.
 
  
Wir wenden dazu das erste Fourierintegral an. Aus obiger Darstellung ist zu erkennen, dass das Signal $x(t)$ für $|t| > T/2$ gleich 0 ist. Das bedeutet, dass das Integrationsintervall auf den Bereich $\pm T/2$ begrenzt werden kann. Damit erhält man den Ansatz:
+
*If you extend numerator and denominator with&nbsp; $T$,&nbsp; you get:
 
   
 
   
$X(f) & = & A \int_{-T/2}^{+T/2} {\rm e}^{-{\rm j2\pi} ft}\,{\rm d}t  =  \frac{ A}{-\rm j2\pi f}\left[ {\rm e}^{-{\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = & \frac{\it A}{-\rm j 2\pi f}\left[\cos({\rm \pi} f T)-{\rm j} \cdot \sin({\rm \pi} fT)-\cos({\rm \pi} fT)-{\rm j} \cdot \sin({\rm \pi} fT)\right]. $
+
:$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$}}
 +
 
  
$\Rightarrow X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{{\rm \pi} f}.$
+
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp; For abbreviation we define the following functions:
 +
*&raquo;'''sinc&ndash;function&laquo;'''&nbsp; $($predominantly used in Anglo-American literature$)$
 +
:$${\rm sinc}( x ) = {\sin (\pi x) }/(\pi x ),$$
  
Erweitert man Zähler und Nenner mit $T$, so erhält man:
+
*&raquo;'''si&ndash;function'''&laquo;&nbsp; or&nbsp; &raquo;$\text{splitting function}$&laquo; &nbsp;$($predominantly used in German literature$)$
+
:$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$}}
$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) .$
 
  
Die Funktion si($x$) = sin($x$)/$x$ wird auf der Seite Rechteckimpuls im Kapitel 3.2 noch eingehend analysiert. Man nennt sie ''si–Funktion'' oder auch ''Spaltfunktion''.
 
{{end}}
 
  
 +
<u>Note:</u> &nbsp; In our&nbsp; $\rm LNTwww$&nbsp; we mostly use the function&nbsp; ${\rm si}(x)$,&nbsp; but important results are also given in the&nbsp; ${\rm sinc}(x)$ form.
  
Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:
 
*Ist $x(t)$ beispielsweise eine Spannung, so hat die Impulsamplitude $A$ die Einheit „Volt”.
 
*Die Dimension der Größe $T$ ist häufig die Zeit, z. B. mit der Einheit „Sekunde”.
 
*Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
 
*Das Argument $f \cdot T$ ist dimensionslos.
 
*Die Spektralfunktion hat somit beispielsweise die Einheit „V/Hz”.
 
  
 +
==Fourier transform==
 +
<br>
 +
The spectrum&nbsp; $X(f)$&nbsp; of a signal&nbsp; $x(t)$&nbsp; is according to the&nbsp; &raquo;first Fourier integral&laquo;:
 +
 +
:$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
==Fouriertransformation==
+
As shown in the last section with a simple example,&nbsp; this integral can be solved easily for an energy-limited signal&nbsp; $x(t)$.&nbsp; For non-energy limited signals,&nbsp; for example
 +
*a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&laquo;]], or
  
Das Spektrum $X(f)$ eines Signals $x(t)$ lautet gemäß dem „Ersten Fourierintegral”:
+
*a&nbsp; [[ Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillation&laquo;]],  
 
$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$
 
  
Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal $x(t)$ problemlos lösbar.
 
Bei nicht energiebegrenzten Signalen, zum Beispiel
 
*einem Gleichsignal (vgl. Kapitel 2.2),
 
*einer harmonischen Schwingung (vgl. Kapitel 2.3),
 
*einem anklingenden Signal,
 
  
divergiert aber das Fourierintegral. Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion $\epsilon (t)$ kann allerdings die Konvergenz erzwungen werden:
+
we observe a divergence of the Fourier integral.&nbsp; Including a bilateral declining auxiliary function&nbsp; $\varepsilon (t)$,&nbsp; however,&nbsp; convergence can be forced:
 
   
 
   
$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$
+
:$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
 +
 
 +
Such non-energy limited signals lead  to so-called&nbsp; &raquo;Dirac delta functions&laquo;&nbsp; in the spectral domain,&nbsp; sometimes also called&nbsp; &raquo;distributions&laquo;.
  
Solche nicht energiebegrenzten Signale führen im Spektrum zu Diracfunktionen, manchmal auch „Distributionen” genannt. Man bezeichnet diesen allgemeinen Funktionalzusammenhang $X(f) = F[x(t)]$ als '''Fouriertransformation''' und verwendet hierfür die Kurzschreibweise:
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
The generally valid functional relation&nbsp; $X(f) = F\big [x(t) \big ]$&nbsp; is called&nbsp; &raquo;'''Fourier Transform'''&laquo;.&nbsp; For the short notation we use&nbsp; $($with the&nbsp; "white dot"&nbsp; for the time domain and the&nbsp; "filled dot"&nbsp; for the spectral domain$)$:
 
   
 
   
$X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,x(t).$
+
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.
+
With a increasing signal,&nbsp; however,&nbsp; convergence is only achieved as long as the time function increases less than exponentially. }}
  
  
{{Beispiel}}
+
{{GraueBox|TEXT=
Wir betrachten eine akausale Sprungfunktion $x(t)$ = sign($t$) mit $x(t)$ = –1 für negative sowie $x(t)$ = +1 für positive Zeiten. Dieses Signal ist in nachfolgender Skizze links in blauer Farbe dargestellt.
+
[[File:P_ID655__Sig_T_3_1_S6.png|right|frame| Jump function and associated spectrum]]
 +
 
 +
$\text{Example 3:}$&nbsp;
 +
We consider an acausal jump function
 +
:$$x (t) = \left\{ {\begin{array}{*{20}c}  { +1 } & { {\rm{for} }\quad t > 0,}  \\  {-1 } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$
 +
This signal is shown in blue color in the left sketch.
 
   
 
   
Da das Signal $x(t)$ nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor $\text{e}^{-\epsilon |t|}$ hinzugefügt werden (es gelte $\epsilon > 0$). Die resultierende Zeitfunktion lautet dann:
+
Since the signal&nbsp; $x(t)$&nbsp; extends to infinity on both sides, we must add a suitable convergence factor&nbsp; $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$&nbsp; with&nbsp; $($&nbsp; $\varepsilon > 0)$&nbsp;  in order to calculate the Fourier transform for both sections.&nbsp; The resulting time function is then
 
   
 
   
$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  {{\rm{e}}^{ - \varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t > 0,}  \\  {{\rm{ - e}}^{\varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t < 0.}  \\\end{array}} \right.$
+
:$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,}  \\  { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm}  t} } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$
  
Ähnlich wie auf der Seite Diracfunktion ergibt sich für die zugehörige Spektralfunktion
+
Following a similar procedure as in section&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac  delta function in the frequency domain&laquo;]]&nbsp; results for the corresponding spectral function:
 
   
 
   
$X_\varepsilon  (f) = \frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} - \frac{1}{{\varepsilon  - {\rm{j}}2{\rm{\pi }}f}} = \frac{{ - {\rm{j4\pi }}f}}{{\varepsilon ^2  + \left( {2{\rm{\pi }}f} \right)^2 }}.$
+
:$$X_\varepsilon  (f) = \frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon  - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2  + \left( {2{\rm{\pi } }f} \right)^2 } }.$$
  
Eigentlich interessieren wir uns aber für das Spektrum der Sprungfunktion. Für diese gilt:
+
But actually we are interested in the spectrum of the&nbsp; &raquo;jump function&laquo;
 
   
 
   
$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$
+
:$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
  
Deshalb ist auch die Spektralfunktion $X(f)$ =F[$x(t)$] als Grenzwert von $X_\epsilon (f)$ für$\epsilon \to 0$ zu bestimmen:
+
Therefore,&nbsp; the spectral function&nbsp; $X(f) =\text{F}\big[x(t)\big]$&nbsp; has to be determined as limit value of&nbsp; $X_\varepsilon(f)$&nbsp; for&nbsp; $\varepsilon \to 0$:
 
   
 
   
$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{{ - {\rm{j}}}}{{{\rm{\pi }}f}} = \frac{1}{{{\rm{j\pi }}f}}.$
+
:$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$
 +
 
 +
In the right graph the imaginary spectral function&nbsp; $X(f)$&nbsp; is shown as a blue curve.&nbsp; You can see that&nbsp; $\vert X(f) \vert$&nbsp; decreases continuously with increasing frequency.
  
In der rechten Grafik ist die rein imaginäre Spektralfunktion $X(f)$ als blaue Kurve dargestellt. Man erkennt, dass mit zunehmender Frequenz $|X(f)|$ kontinuierlich abnimmt.
+
&rArr; &nbsp; The green curve in the left graph shows the signal&nbsp; $y(t)$,&nbsp; which differs from&nbsp; $x(t)$&nbsp; only in the negative time section.  
Der grüne Kurvenzug in der linken Grafik zeigt das Signal $y(t)$, das sich von $x(t)$ nur bei den negativen Zeiten unterscheidet. In diesem Bereich gilt $y(t)$ = 0. Die zugehörige Spektralfunktion $Y(f)$ ist im gesamten Bereich nur halb so groß wie $X(f)$. Dies zeigt die nachfolgende Rechnung:
 
  
$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} = \frac{1}{{{\rm{j2\pi }}f}}.$
+
*In this area&nbsp; $y(t) = 0$.&nbsp; The corresponding spectral function&nbsp; $Y(f)$&nbsp; is only half as large as&nbsp; $X(f)$&nbsp; in the entire range.&nbsp; This is shown in the following calculation:
 +
 
 +
:$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
 
   
 
   
Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei $f$ = 0 mit dem Gewicht 1/2. Hierauf wird im Beispiel zum Abschnitt Zuordnungssatz (Kapitel 3.3) noch im Detail eingegangen.
+
*In addition there is a Dirac delta function at&nbsp; $f = 0$&nbsp; with weight&nbsp; $1/2$, due to the equal part.&nbsp; This is explained in the example in section&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]].&nbsp; }}
{{end}}
 
  
  
==Das zweiter Fourierintegral==
+
==The second Fourier integral==
 +
<br>
 +
Up to now,&nbsp; it has only been shown how to calculate the corresponding spectral function&nbsp; $X(f)$&nbsp; for an aperiodic,&nbsp; pulse-like signal&nbsp; $x(t)$.&nbsp;
 +
[[File:EN_Sig_T_3_1_S7.png|right|frame|On the second Fourier integral]]
 +
Now we turn to the reverse task,&nbsp; namely: &nbsp; How to determine the time function&nbsp; $x(t)$&nbsp; from the spectral function&nbsp; $X(f)$?
  
Bisher haben wir lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal $x(t)$ die zugehörige Spektralfunktion $X(f)$ berechnet. Nun wenden wir uns der umgekehrten Aufgabe zu, aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ zu ermitteln.
+
With the same designations as in the first sections of this chapter,&nbsp; you can write the signal&nbsp; $x(t)$&nbsp; as Fourier series,&nbsp; where now the limit&nbsp; ${f_0}' \to 0$&nbsp; is to be considered:
 +
 +
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2  \hspace{0.03cm}\pi  \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$
  
Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal $x(t)$ als Fourierreihe schreiben, wobei nun der Grenzübergang $f_0' \to 0$ zu berücksichtigen ist:
+
If you extend both the numerator and the denominator by&nbsp; ${f_0}'$,&nbsp; you get
 
   
 
   
$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j 2 \pi  \it\nu {f_{\rm 0}}' t}.$
+
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty} ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi  \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
 +
 
 +
The limit crossing&nbsp; ${f_0}' \to 0$&nbsp; has the following effects:
 +
#The&nbsp; $($infinite$)$&nbsp; sum becomes an integral,&nbsp; where&nbsp;  ${f_0}'$&nbsp; has to be formally replaced by the differential quantity&nbsp; $\text{d}f$&nbsp; $($integration variable$)$.
 +
#The quantity &nbsp;  $\nu \cdot{f_0}'$&nbsp; in the exponent describes the physical frequency&nbsp; $f$.
 +
#The quotient&nbsp; ${D_{\nu}}'/{f_0}'$&nbsp; yields the spectral function&nbsp; $X(f)$&nbsp; at the frequency&nbsp; $f$.
  
Erweitert man nun sowohl den Zähler als auch den Nenner um $f_0'$, so erhält man:
 
 
$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j 2 \pi  \it \nu {f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$
 
  
Der Grenzübergang  $f_0' \to 0$ hat nun folgende Auswirkungen:
+
Taking these properties into account, the&nbsp; &raquo;second Fourier integral&laquo;&nbsp; is obtained.
*Die (unendliche) Summe wird zu einem Integral, wobei  $f_0'$ formal durch die differenzielle Größe d$f$ (Integrationsvariable) zu ersetzen ist.
 
*Die Größe  $v \cdot f_0'$ im Exponenten beschreibt die physikalische Frequenz $f$.
 
*Der Quotient $D_v'/f_0'$ ergibt die Spektralfunktion $X(f)$ bei der Frequenz $f$.
 
  
Unter Berücksichtigung dieser Eigenschaften kommt man zum ''zweiten Fourierintegral''.
+
{{BlaueBox|TEXT= 
 +
$\text{Second Fourier Integral:}$&nbsp; If the spectral function&nbsp; $X(f)$&nbsp; of an aperiodic and energy-limited signal is given,&nbsp; then the corresponding&nbsp; &raquo;'''time signal'''&laquo;&nbsp; is:
  
{{Definition}}
+
:$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$}}
Ist die Spektralfunktion $X(f)$ eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige '''Zeitfunktion''':
 
  
$x(t) = \hspace{0.01cm}\int_{-\infty} ^{{+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f$
 
  
      ⇒    '''Zweites Fourierintegral'''.
 
{{end}}
 
==Aufgaben zu Kapitel 3.1==
 
  
 +
==Exercises for the Chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|Exercise 3.1: Spectrum of the Exponential Pulse]]
  
 +
[[Aufgaben:Exercise_3.1Z:_Spectrum_of_the_Triangular_Pulse| Exercise 3.1Z: Spectrum of the Triangular Pulse]]
  
 +
[[Aufgaben:Exercise_3.2:_From_the_Spectrum_to_the_Signal|Exercise 3.2: From the Spectrum to the Signal]]
  
 +
[[Aufgaben:Exercise_3.2Z:_Sinc-Squared-Spectrum_with_Diracs| Exercise 3.2Z: Sinc&ndash;Squared Spectrum with Diracs]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:38, 14 June 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


In the second chapter periodic signals were described by different harmonic oscillations  (»Fourier series«). 

If one reduces – at least mentally – the repetition frequency of a periodic signal more and more,  i.e.,  the period duration becomes longer and longer,  then one comes from the periodic signal to the unique  »aperiodic signal«  – often also called  »pulse«.

In the following,  such aperiodic and pulse–shaped signals are considered and mathematically described in the time and frequency domain.

The chapter contains in detail:

  1. The derivation of the two  »Fourier integrals«  from the Fourier series,
  2. the extension of the Fourier integral to the  »Fourier transform«  by means of distributions,
  3. »some  special cases«  of pulses:  »rectangular pulse«  and  »Gaussian pulse«,
  4. the  »laws  of Fourier transform«,  and finally
  5. the meaning of the  »convolution operation«  and its various applications.


»Laplace transform«  and  »Hilbert transform«,  which are only applicable to causal signals or systems,  will be treated in the second book  »Linear Time-invariant Systems«.


Properties of aperiodic signals


In the last chapter periodic signals were considered.  The essential characteristic of these signals is,  that you can specify a  period duration  $T_0$  for them.  If such a period duration cannot be indicated or – which is the same in practice – has an infinitely large value  $T_0$,  one speaks of an  »aperiodic signal«.

For the present chapter  »Aperiodic Signals – Pulses»  the following conditions should apply:

  1. The considered signals  $x(t)$  are  aperiodic  and  "energy-limited":   They possess a finite energy  $E_x$  and a negligible  $($medium$)$  power  $P_x$.
  2. Often the energy of these signals is concentrated on a relatively short time range,  so that one also speaks of  »pulse-like signals«  or  »pulses«.


Energy-limited signal  $x_1(t)$  and
power-limited signal  $x_2(t)$

$\text{Example 1:}$  The figure shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$  as an example of an aperiodic and time-limited signal. This pulse has

  1. the finite signal energy   ⇒   here:   $E_1=A^2 \cdot T$,  and
  2. the power  $P_1=0$.



A power-limited signal,  for example the cosine signal  $x_2(t)$  shown below,  has

  1. always a finite power   ⇒   here:   $P_2=A^2/2$,  and
  2. thus also an infinitely large signal energy:   $E_2 \to \infty$.


Closer examination of the Fourier coefficients


We assume a periodic signal  $x_{\rm P}(t)$  with period duration  $T_0$  which corresponds to the explanations in section  »Complex Fourier series«

Periodic signal  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  and its line spectra
  • This signal can be described as follows:
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j 2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  • The Fourier coefficients are generally complex $($with  $D_{-n}=D_n^\ast)$:
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  • The corresponding spectral function  $X_{\rm P}(f)$  is a  »line spectrum«  with spectral lines in the distance  $f_0=1/T_0$:
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  • The upper figure shows on the left the periodic time signal  $x_{\rm P}(t)$  and on the right the corresponding magnitude spectrum  $|X_{\rm P}(f)|$.  This is merely a schematic sketch.
  • If   $x_{\rm P}(t)$ is a real and even function, then  $X_{\rm P}(f)$  is also real and even.  The equation  $X_{\rm P}(f) = |X_{\rm P}(f)|$  is only valid if all spectral lines are positive.


In the lower figure on the left side another periodic signal  ${x_{\rm P}}\hspace{0.01cm}'(t)$  with double period duration  ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$  is displayed.  The following applies to this signal:

$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j} 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$

In the range from  $-T_0/2$  to  $+T_0/2$  the two signals  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  are identical. 

We will also consider the spectral function  ${X_{\rm P} }'(f)$  according to the right sketch:

  • Due to the double period duration  $({T_0}' = 2 \cdot T_0)$  the spectral lines are now closer together  $({f_0}' = f_0/2)$.
  • Both red marked coefficients  $D_n$  und  ${D_{2n}}'$ belong to the same physical frequency   $f = n \cdot f_0 = 2n \cdot {f_0}'$.


We recognize by a comparison of the two coefficients

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
  1. ${x_{\rm P}}'(t) \equiv 0$   between  $T_0/2$  and  ${T_0}'/2$  and also in a symmetrical interval for negative times.
  2. Therefore the integration limits can be restricted to  $\pm T_0/2$. 
  3. Inside the new integration limits:  ${x_{\rm P}}'(t)$  can be replaced by  $x_{\rm P}(t)$.
  4. If we set  ${T_0}' = 2T_0$  in the above equation,  we get:
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2} .$$

$\text{We summarize this result briefly:}$ 

  • The spectral line of the signal  ${x_{\rm P} }'(t)$  at frequency  $f = n \cdot {f_0}'$  is denoted by  ${D_{2n} }'$  $($see lower graph on the right$)$.
  • This line has exactly half the size of the spectral line  $D_n$  of the signal  $x_{\rm P}(t)$  at the same physical frequency  $f$  $($see upper graph on the right$)$.
  • The spectral function  ${X_{\rm P} }'(f)$  has opposite  $X_{\rm P}(f)$  additional spectral lines at  $(n + 1/2) \cdot f_0$  $($see lower graph on the left$)$.
  • These additional lines lead to the fact that in the time domain every second  pulse  of  $x_{\rm P}(t)$  –   located by  $n \cdot T_0$  $(n$ odd$)$  –   is cancelled.


From the periodic to the aperiodic signal


We now take up the considerations in the previous section and select the period duration  ${T_0}'$  of  ${x_{\rm P}}'(t)$  generally by an integer factor  $k$  greater than the period duration  $T_0$  of  ${x_{\rm P}}(t)$.  Then the previous statements can be generalized:

From the periodic to the aperiodic signal
  • The line spacing is smaller for  ${X_{\rm P}}'(f)$  by the factor  $k$  than for the spectrum  ${X_{\rm P}}(f)$.
  • To emphasize this fact,  we denote the discrete frequency variable of function  ${X_{\rm P}}'(f)$  with  $\nu$  instead of  $n$.  The following applies:  
$$\nu=k \cdot n.$$
  • It applies for the red marked spectral line of signal  ${x_{\rm P}}'(t)$  at frequency  $f=n \cdot f_0 =\nu \cdot {f_0}'$:
$${D_\nu}' = {1}/{k} \cdot D_n.$$
  • If one now chooses   –   as shown schematically in the graph   –   the factor  $k$  and thus the period duration  ${T_0}'$  always larger and finally lets it go to infinity,  then
  1. the periodic signal  ${x_{\rm P}}(t)$  changes to the aperiodic signal  $x(t)$,
  2. the line spectrum  ${X_{\rm P}}(f)$  can be replaced by the continuous spectrum  $X(f)$.


The first Fourier integral


Concerning the spectral functions  $X_{\rm P}(f)$  and  $X(f)$  the following statements can be made:

  • The individual spectral lines now lie as close together as desired  $({f_0}'=1/{T_0}' \to 0)$.
  • In the spectral function  $X(f)$  all possible  $($not only discrete$)$  frequencies now occur within certain intervals   ⇒   $X(f)$  is no longer a line spectrum.
  • The contribution of each individual frequency  $f$  to the signal  $x(t)$ is negligibly small  $(k \to \infty,\ {D_{\nu}}' \to 0)$.
  • Because of the infinite number of frequencies there is a finite result in total.
  • Instead of calculating the Fourier coefficients  ${D_{\nu}}'$:  Now a spectral density  $X(f)$  is calculated.  For the frequency  $f=\nu\cdot {f_0}'$  then applies:
$$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
  • The spectral function  $X(f)$  of the aperiodic signal  $x(t)$  is visible in the spectrum  $X_{\rm P}(f)$  of the periodic signal  $x_{\rm P}(t)$ as envelope  $($see graphics in the last section$)$.
  • In the lower graphic  ${D_{\nu}}'$  corresponds to the red-shaded area of the frequency interval around  $\nu \cdot {f_0}'$  with width ${f_0}'$.


If you use the equations given in the last section, you get

$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$

Through the common limit crossing   $({T_0}' \to \infty, \ {f_0}' \to 0)$  the following transformations will happen:

  1. From the periodic signal  $x_{\rm P}(t)$  to the aperiodic signal  $x(t)$.
  2. From the discrete frequency  $\nu \cdot {f_0}'$  to the continuous frequency variable  $f$.


Thus,  a fundamental definition is obtained,  which allows the calculation of the spectral function of an aperiodic time function.  The name of this spectral transformation goes back to the French physicist  »$\text{Jean-Baptiste Joseph Fourier}$«.

$\text{First Fourier Integral:}$ 

The  »spectral function«  $($or short:  the  »spectrum«$)$  of an aperiodic and simultaneously energy limited signal  $x(t)$  is to be calculated as follows

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$


The following  $($German language$)$  learning video should clarify the statements of the last sections:
       »Kontinuierliche und diskrete Spektren«   ⇒   "Continuous and discrete spectra".

$\text{Example 2:}$  Given is the sketched time course  $x(t)$.  The corresponding spectrum  $X(f)$  is searched for using the first Fourier integral:

Rectangular pulse  $x(t)$
  • From the above representation we can see,  that for  $\vert t \vert > T/2$  the signal is  $x(t) = 0$.
  • This means that the integration interval can be limited to the range  $\pm T/2$.
  • This results in the approach:
$$ \begin{align*} X(f) & = A \cdot \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
  • If you extend numerator and denominator with  $T$,  you get:
$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$


$\text{Definitions:}$  For abbreviation we define the following functions:

  • »sinc–function«  $($predominantly used in Anglo-American literature$)$
$${\rm sinc}( x ) = {\sin (\pi x) }/(\pi x ),$$
  • »si–function«  or  »$\text{splitting function}$«  $($predominantly used in German literature$)$
$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$


Note:   In our  $\rm LNTwww$  we mostly use the function  ${\rm si}(x)$,  but important results are also given in the  ${\rm sinc}(x)$ form.


Fourier transform


The spectrum  $X(f)$  of a signal  $x(t)$  is according to the  »first Fourier integral«:

$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

As shown in the last section with a simple example,  this integral can be solved easily for an energy-limited signal  $x(t)$.  For non-energy limited signals,  for example


we observe a divergence of the Fourier integral.  Including a bilateral declining auxiliary function  $\varepsilon (t)$,  however,  convergence can be forced:

$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2 \pi}\it ft} \,{\rm d}t.$$

Such non-energy limited signals lead to so-called  »Dirac delta functions«  in the spectral domain,  sometimes also called  »distributions«.

$\text{Definition:}$  The generally valid functional relation  $X(f) = F\big [x(t) \big ]$  is called  »Fourier Transform«.  For the short notation we use  $($with the  "white dot"  for the time domain and the  "filled dot"  for the spectral domain$)$:

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

With a increasing signal,  however,  convergence is only achieved as long as the time function increases less than exponentially.


Jump function and associated spectrum

$\text{Example 3:}$  We consider an acausal jump function

$$x (t) = \left\{ {\begin{array}{*{20}c} { +1 } & { {\rm{for} }\quad t > 0,} \\ {-1 } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

This signal is shown in blue color in the left sketch.

Since the signal  $x(t)$  extends to infinity on both sides, we must add a suitable convergence factor  $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$  with  $($  $\varepsilon > 0)$  in order to calculate the Fourier transform for both sections.  The resulting time function is then

$$x_\varepsilon (t) = \left\{ {\begin{array}{*{20}c} { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,} \\ { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm} t} } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

Following a similar procedure as in section  »Dirac delta function in the frequency domain«  results for the corresponding spectral function:

$$X_\varepsilon (f) = \frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2 + \left( {2{\rm{\pi } }f} \right)^2 } }.$$

But actually we are interested in the spectrum of the  »jump function«

$$x(t) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon (t).$$

Therefore,  the spectral function  $X(f) =\text{F}\big[x(t)\big]$  has to be determined as limit value of  $X_\varepsilon(f)$  for  $\varepsilon \to 0$:

$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$

In the right graph the imaginary spectral function  $X(f)$  is shown as a blue curve.  You can see that  $\vert X(f) \vert$  decreases continuously with increasing frequency.

⇒   The green curve in the left graph shows the signal  $y(t)$,  which differs from  $x(t)$  only in the negative time section.

  • In this area  $y(t) = 0$.  The corresponding spectral function  $Y(f)$  is only half as large as  $X(f)$  in the entire range.  This is shown in the following calculation:
$$Y(f) = \mathop {\lim }\limits_{\varepsilon \to 0 } Y_\varepsilon (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
  • In addition there is a Dirac delta function at  $f = 0$  with weight  $1/2$, due to the equal part.  This is explained in the example in section  »Assignment Theorem«


The second Fourier integral


Up to now,  it has only been shown how to calculate the corresponding spectral function  $X(f)$  for an aperiodic,  pulse-like signal  $x(t)$. 

On the second Fourier integral

Now we turn to the reverse task,  namely:   How to determine the time function  $x(t)$  from the spectral function  $X(f)$?

With the same designations as in the first sections of this chapter,  you can write the signal  $x(t)$  as Fourier series,  where now the limit  ${f_0}' \to 0$  is to be considered:

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2 \hspace{0.03cm}\pi \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$

If you extend both the numerator and the denominator by  ${f_0}'$,  you get

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty} ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$

The limit crossing  ${f_0}' \to 0$  has the following effects:

  1. The  $($infinite$)$  sum becomes an integral,  where  ${f_0}'$  has to be formally replaced by the differential quantity  $\text{d}f$  $($integration variable$)$.
  2. The quantity   $\nu \cdot{f_0}'$  in the exponent describes the physical frequency  $f$.
  3. The quotient  ${D_{\nu}}'/{f_0}'$  yields the spectral function  $X(f)$  at the frequency  $f$.


Taking these properties into account, the  »second Fourier integral«  is obtained.

$\text{Second Fourier Integral:}$  If the spectral function  $X(f)$  of an aperiodic and energy-limited signal is given,  then the corresponding  »time signal«  is:

$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$


Exercises for the Chapter


Exercise 3.1: Spectrum of the Exponential Pulse

Exercise 3.1Z: Spectrum of the Triangular Pulse

Exercise 3.2: From the Spectrum to the Signal

Exercise 3.2Z: Sinc–Squared Spectrum with Diracs