Difference between revisions of "Signal Representation/The Fourier Transform and its Inverse"

From LNTwww
 
(92 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Aperiodische Signale - Implulse
+
|Untermenü=Aperiodic Signals - Impulses
|Vorherige Seite=Fourierreihe
+
|Vorherige Seite=Fourier Series
|Nächste Seite=Einige Sonderfälle impulsartiger Signale
+
|Nächste Seite=Special Cases of Impulse Signals
 
}}
 
}}
  
Verringert man – zumindest gedanklich – die Wiederholfrequenz eines periodischen Signals immer mehr, das heißt, die Periodendauer wird immer länger, so kommt man vom periodischen Signal zum einmaligen aperiodischen Signal bezeichnet.
+
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
 +
<br>
 +
In the second chapter periodic signals were described by different harmonic oscillations&nbsp; (&raquo;Fourier series&laquo;).&nbsp; 
  
 +
If one reduces &ndash; at least mentally &ndash; the repetition frequency of a periodic signal more and more,&nbsp; i.e.,&nbsp; the period duration becomes longer and longer,&nbsp; then one comes from the periodic signal to the unique&nbsp; &raquo;aperiodic signal&laquo;&nbsp; &ndash; often also called&nbsp; &raquo;pulse&laquo;.
  
 +
In the following,&nbsp; such aperiodic and pulse&ndash;shaped signals are considered and mathematically described in the time and frequency domain.
  
==Eigenschaften aperiodischer Signale==
+
The chapter contains in detail:
 +
# The derivation of the two&nbsp; &raquo;Fourier integrals&laquo;&nbsp; from the Fourier series,
 +
# the extension of the Fourier integral to the&nbsp; &raquo;Fourier transform&laquo;&nbsp; by means of distributions,
 +
# &raquo;some&nbsp; special cases&laquo;&nbsp; of pulses:&nbsp; &raquo;rectangular pulse&laquo;&nbsp; and&nbsp; &raquo;Gaussian pulse&laquo;,
 +
# the&nbsp; &raquo;laws&nbsp; of Fourier transform&laquo;,&nbsp; and finally
 +
# the meaning of the&nbsp; &raquo;convolution operation&laquo;&nbsp; and its various applications.
  
Im letzten Kapitel haben wir ''periodische Signale'' betrachtet. Das wesentliche Charakteristikum dieser Signale ist, dass für sie eine ''Periodendauer'' $T_0$ angegeben werden kann. Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat $T_0$ einen unendlich großen Wert, so spricht man von einem '''aperiodischen Signal'''.
 
  
Für das vorliegende  Kapitel &bdquo;Aperiodische Signale  - Impulse&rdquo; sollen folgende Voraussetzungen gelten:
+
&raquo;Laplace transform&laquo;&nbsp; and&nbsp; &raquo;Hilbert transform&laquo;,&nbsp; which are only applicable to causal signals or systems,&nbsp; will be treated in the second book&nbsp; &raquo;Linear Time-invariant Systems&laquo;.
*Die betrachteten Signale $x(t)$ sind ''aperiodisch'' und ''energiebegrenzt'', das heißt, sie besitzen nur eine endliche Energie $E_x$ und eine vernachlässigbar kleine (mittlere) Leistung $P_x$.
 
*Oft konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von ''impulsförmigen Signalen'' spricht.
 
  
  
{{Beispiel}}
 
  
[[File:P_ID550__Sig_T_3_1_S1.png|right|Energiebegrenztes und leistungsbegrenztes Signal]]
+
==Properties of aperiodic signals==
Die Grafik zeigt oben einen Rechteckimpuls $x_1(t)$ mit Amplitude $A$ und Dauer $T$ als Beispiel eines aperiodischen und zeitlich begrenzten Signals. Dieser Impuls besitzt
+
<br>
*eine endliche Signalenergie ($E_1=A^2 \cdot T$), und
+
In the last chapter periodic signals were considered.&nbsp; The essential characteristic of these signals is,&nbsp; that you can specify a&nbsp; period duration&nbsp; $T_0$&nbsp; for them.&nbsp; If such a period duration cannot be indicated or &ndash; which is the same in practice &ndash; has an infinitely large value&nbsp; $T_0$,&nbsp; one speaks of an&nbsp; &raquo;aperiodic signal&laquo;.
*die Leistung $P_1$ = 0.
 
  
 +
For the present chapter&nbsp; &raquo;Aperiodic Signals &ndash; Pulses&raquo;&nbsp; the following conditions should apply:
 +
#The considered signals&nbsp; $x(t)$&nbsp; are&nbsp; aperiodic&nbsp; and&nbsp; "energy-limited": &nbsp; They possess a finite energy&nbsp; $E_x$&nbsp; and a negligible&nbsp; $($medium$)$&nbsp; power&nbsp; $P_x$.
 +
#Often the energy of these signals is concentrated on a relatively short time range,&nbsp; so that one also speaks of&nbsp; &raquo;pulse-like signals&laquo;&nbsp; or&nbsp; &raquo;pulses&laquo;.
  
Ein leistungsbegrenztes Signal, zum Beispiel das unten dargestellte Cosinussignal $x_2(t)$, besitzt dagegen
 
*stets eine endliche Leistung ($P_2=A^2/2$), und
 
*eine unendlich große Signalenergie ($E_2 \to \infty$).
 
  
{{end}}
+
{{GraueBox|TEXT=
 +
[[File:P_ID550__Sig_T_3_1_S1.png|right|frame|Energy-limited signal&nbsp; $x_1(t)$&nbsp; and <br>power-limited signal&nbsp; $x_2(t)$]] 
 +
$\text{Example 1:}$&nbsp;
 +
The figure shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$&nbsp; as an example of an aperiodic and time-limited signal. This pulse has
 +
#the finite signal energy &nbsp; &rArr; &nbsp; here: &nbsp; $E_1=A^2 \cdot T$,&nbsp; and
 +
#the power&nbsp; $P_1=0$.
  
  
==Genauere Betrachtung der Fourierkoeffizienten==
 
  
Wir gehen von einem periodischen Signal $x_{\rm P}(t)$ mit der Periodendauer $T_0$ aus, das entprechend den Ausführungen auf der Seite [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|Komplexe Fourierreihe]] wie folgt dargestellt werden kann:
 
  
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}.$$
+
A power-limited signal,&nbsp; for example the cosine signal&nbsp; $x_2(t)$&nbsp; shown below,&nbsp; has
 +
#always a finite power &nbsp; &rArr; &nbsp; here: &nbsp; $P_2=A^2/2$,&nbsp; and
 +
#thus also an infinitely large signal energy: &nbsp; $E_2 \to \infty$.}}
  
Die Fourierkoeffizienten sind im Allgemeinen komplex, und es gilt $D_{-n}=D_n^\ast$:
+
 
 +
==Closer examination of the Fourier coefficients==
 +
<br>
 +
We assume a periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; with period duration&nbsp; $T_0$&nbsp; which corresponds to the explanations in section&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;Complex Fourier series&laquo;]].&nbsp;
 +
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|right|frame|Periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; and&nbsp; $x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; and its line spectra]]
 +
*This signal can be described as follows:
 +
:$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
 +
 
 +
*The Fourier coefficients are generally complex $($with&nbsp; $D_{-n}=D_n^\ast)$:
 
   
 
   
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
+
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  
Die dazugehörige Spektralfunktion $X_{\rm P}(f)$ ist ein so genanntes ''Linienspektrum'' mit Spektrallinien im Abstand $f_0=1/T_0$:
+
*The corresponding spectral function&nbsp; $X_{\rm P}(f)$&nbsp; is a&nbsp; &raquo;line spectrum&laquo;&nbsp; with spectral lines in the distance&nbsp; $f_0=1/T_0$:
 
   
 
   
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
+
:$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  
Die obere Grafik zeigt links das periodische Zeitsignal $x_{\rm P}(t)$ und rechts das zugehörige Betragsspektrum $X_{\rm P}(f)$.
+
*The upper figure shows on the left the periodic time signal&nbsp; $x_{\rm P}(t)$&nbsp; and on the right the corresponding magnitude spectrum&nbsp; $|X_{\rm P}(f)|$.&nbsp; This is merely a schematic sketch.
 +
 +
*If &nbsp; $x_{\rm P}(t)$&nbsp;is a real and even function, then&nbsp; $X_{\rm P}(f)$&nbsp; is also real and even.&nbsp; The equation&nbsp; $X_{\rm P}(f) = |X_{\rm P}(f)|$&nbsp; is only valid if all spectral lines are positive.
 +
<br clear=all>
 +
In the lower figure on the left side another periodic signal&nbsp; ${x_{\rm P}}\hspace{0.01cm}'(t)$&nbsp; with double period duration&nbsp; ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$&nbsp; is displayed.&nbsp; The following applies to this signal:
 +
 +
:$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$
  
''Anmerkung:'' Es handelt sich hierbei lediglich um eine schematische Skizze. Ist $x_{\rm P}(t)$ eine reelle und gerade Funktion, so ist $X_{\rm P}(f)$ ebenfalls reell und gerade. Die Gleichung $X_{\rm P}(f) = |X_{\rm P}(f)|$ gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.
+
In the range from&nbsp; $-T_0/2$&nbsp; to&nbsp; $+T_0/2$&nbsp; the two signals&nbsp; $x_{\rm P}(t)$&nbsp; and &nbsp;$x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; are identical.&nbsp;
  
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|Periodisches Signal und Linienspektrum]]
+
We will also consider the spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; according to the right sketch:
 +
*Due to the double period duration&nbsp; $({T_0}' = 2 \cdot T_0)$&nbsp; the spectral lines are now closer together&nbsp; $({f_0}' = f_0/2)$.
  
In der unteren Grafik ist links ein weiteres periodisches Signal $x_{\rm P}'(t)$ mit doppelter Periodendauer $T_0' = 2 \cdot T_0$ dargestellt. Für dieses Signals gilt:
+
*Both red marked coefficients&nbsp; $D_n$&nbsp; und&nbsp; ${D_{2n}}'$ belong to the same physical frequency &nbsp; $f = n \cdot  f_0 = 2n \cdot {f_0}'$.
 
$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j} 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}'}\, {\rm d}\it t.$$
 
  
Im Bereich von $-T_0/2$ bis $+T_0/2$ sind die beiden Signale identisch.
 
  
Betrachten wir auch hier die Spektralfunktion $X_P'(f)$ entsprechend der rechten Skizze:
+
We recognize by a comparison of the two coefficients
*Aufgrund der doppelten Periodendauer ($T_0' = 2 \cdot T_0$) liegen nun die Spektrallinien enger beisammen ($f_0' = f_0/2$).
+
*Die beiden Koeffizienten $D_n$ und ${D_{2n}}'$ – im Bild rot hervorgehoben – gehören zur gleichen physikalischen Frequenz $f = n \cdot f_0 = 2n \cdot f_0'$.
+
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t  \text{:} $$
  
 +
#${x_{\rm P}}'(t) \equiv 0$ &nbsp; between&nbsp; $T_0/2$&nbsp; and&nbsp; ${T_0}'/2$&nbsp; and  also in a symmetrical interval for negative times.
 +
#Therefore the integration limits can be restricted to&nbsp; $\pm T_0/2$.&nbsp;
 +
#Inside the new integration limits:&nbsp; ${x_{\rm P}}'(t)$&nbsp; can be replaced by&nbsp; $x_{\rm P}(t)$.
 +
#If we set&nbsp; ${T_0}' = 2T_0$&nbsp; in the above equation,&nbsp; we get:
 +
 +
:$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
  
Wir erkennen durch Analyse der Koeffizienten
+
{{BlaueBox|TEXT= 
 +
$\text{We summarize this result briefly:}$&nbsp;
 +
*The spectral line of the signal&nbsp; ${x_{\rm P} }'(t)$&nbsp; at frequency&nbsp; $f = n \cdot {f_0}'$&nbsp; is denoted by&nbsp; ${D_{2n} }'$&nbsp; $($see lower graph on the right$)$.
 
   
 
   
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{und} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
+
*This line has exactly half the size of the spectral line&nbsp; $D_n$&nbsp; of the signal&nbsp; $x_{\rm P}(t)$&nbsp; at the same physical frequency&nbsp; $f$&nbsp; $($see upper graph on the right$)$.
  
*Zwischen $T_0/2$ und $T_0'/2$ ist ${x_{\rm P}}'(t)$ identisch 0, ebenso im dazu symmetrischen Intervall bei negativen Zeiten.
+
*The spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; has opposite&nbsp; $X_{\rm P}(f)$&nbsp; additional spectral lines at&nbsp; $(n + 1/2) \cdot f_0$&nbsp; $($see lower graph on the left$)$.
*Deshalb können die Integrationsgrenzen auf $\pm T_0/2$ eingeschränkt werden.
 
*Innerhalb der neuen Integrationsgrenzen kann ${x_{\rm P}}'(t)$ durch $x_{\rm P}(t)$ ersetzt werden.
 
  
Setzen wir nun in obiger Gleichung noch $T_0' = 2T_0$, so erhalten wir:
+
*These additional lines lead to the fact that in the time domain every second&nbsp; pulse&nbsp; of&nbsp; $x_{\rm P}(t)$&nbsp; &ndash; &nbsp; located by&nbsp; $n \cdot T_0$&nbsp; $(n$ odd$)$&nbsp; &ndash; &nbsp; is cancelled.}}
 
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
 
  
Fassen wir dieses Ergebnis kurz zusammen:
 
*Die Spektrallinie des Signals ${x_{\rm P}}'(t)$ bei der Frequenz $f = n \cdot f_0'$ wird mit ${D_{2n}}'$ bezeichnet (untere Grafik).
 
*Diese Linie ist genau halb so groß wie die Spektrallinie $D_n$ des Signals $x_{\rm P}(t)$ bei der gleichen physikalischen Frequenz $f$ (obere Grafik).
 
*Die Spektralfunktion ${X_{\rm P}}'(f)$ weist gegenüber $X_P(f)$ zusätzliche Spektrallinien bei $(n + 1/2) \cdot f_0$ auf. Diese führen dazu, dass im Zeitbereich jeder zweite Impuls von $x_{\rm P}(t)$ um $n \cdot T_0$ gelegen ($n$ ungeradzahlig) ausgelöscht wird.
 
  
  
 +
==From the periodic to the aperiodic signal==
 +
<br>
 +
We now take up the considerations in the previous section and select the period duration&nbsp; ${T_0}'$&nbsp; of&nbsp; ${x_{\rm P}}'(t)$&nbsp; generally by an integer factor&nbsp; $k$&nbsp; greater than the period duration&nbsp; $T_0$&nbsp; of&nbsp; ${x_{\rm P}}(t)$.&nbsp; Then the previous statements can be generalized:
  
==Vom periodischen zum aperiodischen Signal==
+
[[File:P_ID398__Sig_T_3_1_S3_rah.png|right|frame|From the periodic to the aperiodic signal]]
Wir greifen nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer $T_0'$ von ${x_{\rm P}}'(t)$ allgemein um einen ganzzahligen Faktor $k$ größer als die Periodendauer $T_0$ von ${x_{\rm P}}(t)$. Dann können die bisherigen Aussagen verallgemeinert werden:
+
*The line spacing is smaller for&nbsp; ${X_{\rm P}}'(f)$&nbsp; by the factor&nbsp; $k$&nbsp; than for the spectrum&nbsp; ${X_{\rm P}}(f)$.
*Der Linienabstand ist bei ${X_{\rm P}}'(f)$ um den Faktor $k$ geringer als beim Spektrum ${X_{\rm P}}(f)$.
 
*Um diesen Sachverhalt hervorzuheben, bezeichnen wir die Frequenz-Laufvariable der Funktion ${X_{\rm P}}'(f)$ mit $\nu$ anstelle von $n$. Es gilt: $\nu=k \cdot n$.
 
*Für die Spektrallinie des Signals ${X_{\rm P}}'(f)$ bei der Frequenz $f=n \cdot f_0 =\nu \cdot f_0'$ gilt:
 
 
$${D_\nu}' = {1}/{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n .$$
 
  
[[File:P_ID398__Sig_T_3_1_S3_rah.png|Vom periodischen zum aperiodischen Signal]]
+
*To emphasize this fact,&nbsp; we denote the discrete frequency variable of function&nbsp; ${X_{\rm P}}'(f)$&nbsp; with&nbsp; $\nu$&nbsp; instead of&nbsp; $n$.&nbsp; The following applies: &nbsp;
 +
:$$\nu=k \cdot n.$$
 +
*It applies for the red marked spectral line of signal&nbsp; ${x_{\rm P}}'(t)$&nbsp; at frequency&nbsp; $f=n \cdot f_0 =\nu \cdot {f_0}'$:
 +
:$${D_\nu}' = {1}/{k} \cdot D_n.$$
  
Wählt man nun – wie im Bild schematisch dargestellt – den Faktor $k$ und damit die Periodendauer $T_0'$ immer größer und lässt sie schließlich nach unendlich gehen, so
+
*If one now chooses &nbsp; &ndash; &nbsp; as shown schematically in the graph &nbsp; &ndash; &nbsp; the factor&nbsp; $k$&nbsp; and thus the period duration&nbsp; ${T_0}'$&nbsp; always larger and finally lets it go to infinity,&nbsp; then
*geht das periodische Signal ${x_{\rm P}}(t)$ in das aperiodische Signal $x(t)$ über,
+
# the periodic signal&nbsp; ${x_{\rm P}}(t)$&nbsp; changes to the aperiodic signal&nbsp; $x(t)$,
*kann man das Linienspektrum ${X_{\rm P}}(f)$ durch das kontinuierliche Spektrum $X(f)$ ersetzen.
+
#the line spectrum&nbsp; ${X_{\rm P}}(f)$&nbsp; can be replaced by the continuous spectrum&nbsp; $X(f)$.
 +
<br clear=all>
 +
==The first Fourier integral==
 +
<br>
 +
Concerning the spectral functions&nbsp; $X_{\rm P}(f)$&nbsp; and&nbsp; $X(f)$&nbsp; the following statements can be made:
 +
*The individual spectral lines now lie as close together as desired&nbsp; $({f_0}'=1/{T_0}' \to 0)$.
  
 +
*In the spectral function&nbsp; $X(f)$&nbsp; all possible&nbsp; $($not only discrete$)$&nbsp; frequencies now occur within certain intervals &nbsp; &rArr; &nbsp; $X(f)$&nbsp; is no longer a line spectrum.
  
==Das erste Fourierintegral==
+
*The contribution of each individual frequency&nbsp; $f$&nbsp; to the signal&nbsp; $x(t)$&nbsp;is negligibly small&nbsp; $(k \to \infty,\ {D_{\nu}}' \to 0)$.
 +
 +
*Because of the infinite number of frequencies there is a finite result in total.
  
Bezüglich den Spektralfunktion $X_{\rm P}(f)$ und $X(f)$ lassen sich somit folgende Aussagen machen:
+
*Instead of calculating the Fourier coefficients&nbsp; ${D_{\nu}}'$:&nbsp; Now a spectral density&nbsp; $X(f)$&nbsp; is calculated.&nbsp; For the frequency&nbsp; $f=\nu\cdot {f_0}'$&nbsp; then applies:
*Die einzelnen Spektrallinien liegen nun beliebig eng beieinander ($f_0'=1/T_0' \to 0$).
 
*In der Spektralfunktion $X(f)$ treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf. Damit stellt $X(f)$ kein Linienspektrum mehr dar.
 
*Der Beitrag einer jeden einzelnen Frequenz $f$ zum Signal ist nur verschwindend gering ($k \to \infty, {D_{\nu}}' \to 0$). Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
 
*Anstatt die Fourierkoeffizienten ${D_{\nu}}'$ zu berechnen, wird nun eine spektrale Dichte $X(f)$ ermittelt. Bei der Frequenz $f=\nu\cdot f_0'$ gilt dann:
 
 
   
 
   
 
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$  
 
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$  
*Die Spektralfunktion (Dichte) $X(f)$ des aperiodischen Signals $x(t)$ ist im Spektrum $X_{\rm P}(f)$ des vergleichbaren periodischen Signals $x_{\rm P}(t)$ als Einhüllende erkennbar (siehe Grafiken).
+
*The spectral function&nbsp; $X(f)$&nbsp; of the aperiodic signal&nbsp; $x(t)$&nbsp; is visible in the spectrum&nbsp; $X_{\rm P}(f)$&nbsp; of the periodic signal&nbsp; $x_{\rm P}(t)$ as envelope&nbsp; $($see graphics in the last section$)$.
*In der unteren Grafik entspricht ${D_{\nu}}'$ der rot hinterlegten Fläche des Frequenzintervalls um $\nu \cdot f_0'$ mit der Breite $f_0'$.
 
  
[[File:P_ID397__Sig_T_3_1_S3_b_rah.png|Vom periodischen zum aperiodischen Signal]]
+
*In the lower graphic&nbsp; ${D_{\nu}}'$&nbsp; corresponds to the red-shaded area of the frequency interval around&nbsp; $\nu \cdot {f_0}'$&nbsp; with width ${f_0}'$.
  
  
Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:
+
If you use the equations given in the last section, you get
 
   
 
   
$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
+
:$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
  
Durch den gemeinsamen Grenzübergang ($T_0' \to \infty, f_0' \to 0$) wird nun
+
Through the common limit crossing &nbsp; $({T_0}' \to \infty, \ {f_0}' \to 0)$&nbsp; the following transformations will happen:
*aus dem periodischen Signal $x_{\rm P}(t)$ das aperiodische Signal $x(t)$, und
+
#From the periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; to the aperiodic signal&nbsp; $x(t)$.
*aus der diskreten Frequenz $\nu \cdot f_0'$ die kontinuierliche Frequenzvariable $f$.
+
#From the discrete frequency&nbsp; $\nu \cdot {f_0}'$&nbsp; to the continuous frequency variable&nbsp; $f$.
  
  
Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht. Der Name dieser Spektraltransformation geht auf den französischen Physiker [https://de.wikipedia.org/wiki/Joseph_Fourier Jean-Baptiste-Joseph Fourier] zurück.
+
Thus,&nbsp; a fundamental definition is obtained,&nbsp; which allows the calculation of the spectral function of an aperiodic time function.&nbsp; The name of this spectral transformation goes back to the French physicist&nbsp; [https://en.wikipedia.org/wiki/Joseph_Fourier &raquo;$\text{Jean-Baptiste Joseph Fourier}$&laquo;].
  
{{Definition}}
+
{{BlaueBox|TEXT= 
'''Erstes Fourierintegral''': &nbsp; Die Spektralfunktion (oder kurz: das Spektrum) eines aperiodischen und gleichzeitig energiebegrenzten Signals $x(t)$ ist wie folgt zu berechnen:
+
$\text{First Fourier Integral:}$&nbsp;
  
$$X(f)= \hspace{0.05cm}\int \limits_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t$$
+
The&nbsp; &raquo;'''spectral function'''&laquo;&nbsp; $($or short:&nbsp; the&nbsp;  &raquo;'''spectrum'''&laquo;$)$&nbsp; of an aperiodic and simultaneously energy limited signal&nbsp; $x(t)$&nbsp; is to be calculated as follows
  
{{end}}
+
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$}}
  
  
Das Lernvideo [[Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren]] soll Ihnen die Aussagen der letzten Seiten nochmals verdeutlichen
+
The following&nbsp; $($German language$)$&nbsp; learning video should clarify the statements of the last sections:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|&raquo;Kontinuierliche und diskrete Spektren&laquo;]] &nbsp; &rArr; &nbsp; "Continuous and discrete spectra".
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
Given is the sketched time course&nbsp; $x(t)$.&nbsp; The corresponding spectrum&nbsp; $X(f)$&nbsp; is searched for using the first Fourier integral:
 +
[[File:P_ID330__Sig_T_3_1_S5_neu.png|right|frame|Rectangular pulse&nbsp; $x(t)$]]
 +
*From the above representation we can see,&nbsp; that for&nbsp; $\vert t \vert > T/2$&nbsp; the signal is&nbsp; $x(t) = 0$.
 
   
 
   
 +
*This means that the integration interval can be limited to the range&nbsp; $\pm T/2$.
 +
 +
*This results in the approach:
 +
 +
:$$ \begin{align*} X(f) & =  A \cdot  \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t  = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2}  \\ & =  \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
  
 +
:$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
  
==Beispiel zum ersten Fourierintegral==
+
*If you extend numerator and denominator with&nbsp; $T$,&nbsp; you get:
 +
 +
:$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$}}
  
{{Beispiel}}
 
Gegeben ist der skizzierte Zeitverlauf $x(t)$. Gesucht ist das zugehörige Spektrum $X(f)$.
 
  
[[File:P_ID330__Sig_T_3_1_S5_neu.png|Rechteckimpuls]]
+
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp; For abbreviation we define the following functions:
 +
*&raquo;'''sinc&ndash;function&laquo;'''&nbsp; $($predominantly used in Anglo-American literature$)$
 +
:$${\rm sinc}( x ) =  {\sin  (\pi  x) }/(\pi  x ),$$
  
Wir wenden dazu das erste Fourierintegral an. Aus obiger Darstellung ist zu erkennen, dass das Signal $x(t)$ für $|t| > T/2$ gleich 0 ist. Das bedeutet, dass das Integrationsintervall auf den Bereich $\pm T/2$ begrenzt werden kann. Damit erhält man den Ansatz:
+
*&raquo;'''si&ndash;function'''&laquo;&nbsp; or&nbsp; &raquo;$\text{splitting function}$&laquo; &nbsp;$($predominantly used in German literature$)$  
+
:$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$}}
$$ \begin{align*} X(f) & =  A \int_{-T/2}^{+T/2} {\rm e}^{-{\rm j2\pi} ft}\,{\rm d}t  =  \frac{ A}{-\rm j2\pi f}\left[ {\rm e}^{-{\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = \frac{\it A}{-\rm j 2\pi f}\left[\cos({\rm \pi} f T)-{\rm j} \cdot \sin({\rm \pi} fT)-\cos({\rm \pi} fT)-{\rm j} \cdot \sin({\rm \pi} fT)\right]. \end{align*}$$
 
  
{{end}}
 
  
 +
<u>Note:</u> &nbsp; In our&nbsp; $\rm LNTwww$&nbsp; we mostly use the function&nbsp; ${\rm si}(x)$,&nbsp; but important results are also given in the&nbsp; ${\rm sinc}(x)$ form.
  
$$\Rightarrow X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{{\rm \pi} f}.$$
 
  
Erweitert man Zähler und Nenner mit $T$, so erhält man:
+
==Fourier transform==
 +
<br>
 +
The spectrum&nbsp; $X(f)$&nbsp; of a signal&nbsp; $x(t)$&nbsp; is according to the&nbsp; &raquo;first Fourier integral&laquo;:
 
   
 
   
$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) .$$
+
:$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
 
 
 
Die Funktion $\text{si}(x) = \sin(x)/x$ wird auf der Seite Rechteckimpuls im Kapitel 3.2 noch eingehend analysiert. Man nennt sie ''si–Funktion'' oder auch ''Spaltfunktion''.
 
  
Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:
+
As shown in the last section with a simple example,&nbsp; this integral can be solved easily for an energy-limited signal&nbsp; $x(t)$.&nbsp; For non-energy limited signals,&nbsp; for example
*Ist $x(t)$ beispielsweise eine Spannung, so hat die Impulsamplitude $A$ die Einheit „Volt”.
+
*a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&laquo;]], or
*Die Dimension der Größe $T$ ist häufig die Zeit, z. B. mit der Einheit „Sekunde”.
 
*Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
 
*Das Argument $f \cdot T$ ist dimensionslos.
 
*Die Spektralfunktion hat somit beispielsweise die Einheit „V/Hz”.
 
  
 +
*a&nbsp; [[ Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillation&laquo;]],
  
  
==Fouriertransformation==
+
we observe a divergence of the Fourier integral.&nbsp; Including a bilateral declining auxiliary function&nbsp; $\varepsilon (t)$,&nbsp; however,&nbsp; convergence can be forced:
 
 
Das Spektrum $X(f)$ eines Signals $x(t)$ lautet gemäß dem „Ersten Fourierintegral”:
 
 
   
 
   
$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
+
:$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2 \pi}\it ft} \,{\rm d}t.$$
 
 
Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal $x(t)$ problemlos lösbar.
 
Bei nicht energiebegrenzten Signalen, zum Beispiel
 
*einem Gleichsignal (vgl. Kapitel 2.2),
 
*einer harmonischen Schwingung (vgl. Kapitel 2.3),
 
*einem anklingenden Signal,
 
  
divergiert aber das Fourierintegral. Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion $\epsilon (t)$ kann allerdings die Konvergenz erzwungen werden:
+
Such non-energy limited signals lead to so-called&nbsp; &raquo;Dirac delta functions&laquo;&nbsp; in the spectral domain,&nbsp; sometimes also called&nbsp; &raquo;distributions&laquo;.  
   
 
$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
 
  
Solche nicht energiebegrenzten Signale führen im Spektrum zu Diracfunktionen, manchmal auch „Distributionen” genannt. Man bezeichnet diesen allgemeinen Funktionalzusammenhang $X(f) = F[x(t)]$ als '''Fouriertransformation''' und verwendet hierfür die Kurzschreibweise:
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
The generally valid functional relation&nbsp; $X(f) = F\big [x(t) \big ]$&nbsp; is called&nbsp; &raquo;'''Fourier Transform'''&laquo;.&nbsp; For the short notation we use&nbsp; $($with the&nbsp; "white dot"&nbsp; for the time domain and the&nbsp; "filled dot"&nbsp; for the spectral domain$)$:
 
   
 
   
$$X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,x(t).$$
+
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.
+
With a increasing signal,&nbsp; however,&nbsp; convergence is only achieved as long as the time function increases less than exponentially. }}
  
  
{{Beispiel}}
+
{{GraueBox|TEXT=
Wir betrachten eine akausale Sprungfunktion $x(t)$ = sign($t$) mit $x(t)$ = –1 für negative sowie $x(t)$ = +1 für positive Zeiten. Dieses Signal ist in nachfolgender Skizze links in blauer Farbe dargestellt.
+
[[File:P_ID655__Sig_T_3_1_S6.png|right|frame| Jump function and associated spectrum]]
 +
 
 +
$\text{Example 3:}$&nbsp;
 +
We consider an acausal jump function
 +
:$$x (t) = \left\{ {\begin{array}{*{20}c}  { +1 } & { {\rm{for} }\quad t > 0,}  \\  {-1 } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$
 +
This signal is shown in blue color in the left sketch.
 
   
 
   
[[File:P_ID655__Sig_T_3_1_S6.png| Sprungfunktion und Spektrum]]
+
Since the signal&nbsp; $x(t)$&nbsp; extends to infinity on both sides, we must add a suitable convergence factor&nbsp; $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$&nbsp; with&nbsp; $($&nbsp; $\varepsilon > 0)$&nbsp;  in order to calculate the Fourier transform for both sections.&nbsp; The resulting time function is then
 
 
Da das Signal $x(t)$ nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor $\text{e}^{-\epsilon |t|}$ hinzugefügt werden (es gelte $\epsilon > 0$). Die resultierende Zeitfunktion lautet dann:
 
 
   
 
   
$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  {{\rm{e}}^{ - \varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t > 0,}  \\  {{\rm{ - e}}^{\varepsilon t} } & {{\rm{f\ddot{u}r}}\quad t < 0.}  \\\end{array}} \right.$$
+
:$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,}  \\  { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm}  t} } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$
  
Ähnlich wie auf der Seite Diracfunktion ergibt sich für die zugehörige Spektralfunktion
+
Following a similar procedure as in section&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac  delta function in the frequency domain&laquo;]]&nbsp; results for the corresponding spectral function:
 
   
 
   
$$X_\varepsilon  (f) = \frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} - \frac{1}{{\varepsilon  - {\rm{j}}2{\rm{\pi }}f}} = \frac{{ - {\rm{j4\pi }}f}}{{\varepsilon ^2  + \left( {2{\rm{\pi }}f} \right)^2 }}.$$
+
:$$X_\varepsilon  (f) = \frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon  - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2  + \left( {2{\rm{\pi } }f} \right)^2 } }.$$
  
Eigentlich interessieren wir uns aber für das Spektrum der Sprungfunktion. Für diese gilt:
+
But actually we are interested in the spectrum of the&nbsp; &raquo;jump function&laquo;
 
   
 
   
$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
+
:$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
  
Deshalb ist auch die Spektralfunktion $X(f)$ =F[$x(t)$] als Grenzwert von $X_\epsilon (f)$ für$\epsilon \to 0$ zu bestimmen:
+
Therefore,&nbsp; the spectral function&nbsp; $X(f) =\text{F}\big[x(t)\big]$&nbsp; has to be determined as limit value of&nbsp; $X_\varepsilon(f)$&nbsp; for&nbsp; $\varepsilon \to 0$:
 
   
 
   
$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{{ - {\rm{j}}}}{{{\rm{\pi }}f}} = \frac{1}{{{\rm{j\pi }}f}}.$$
+
:$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$
 
 
In der rechten Grafik ist die rein imaginäre Spektralfunktion $X(f)$ als blaue Kurve dargestellt. Man erkennt, dass mit zunehmender Frequenz $|X(f)|$ kontinuierlich abnimmt.
 
Der grüne Kurvenzug in der linken Grafik zeigt das Signal $y(t)$, das sich von $x(t)$ nur bei den negativen Zeiten unterscheidet. In diesem Bereich gilt $y(t)$ = 0. Die zugehörige Spektralfunktion $Y(f)$ ist im gesamten Bereich nur halb so groß wie $X(f)$. Dies zeigt die nachfolgende Rechnung:
 
  
$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{{\varepsilon  + {\rm{j}}2{\rm{\pi }}f}} = \frac{1}{{{\rm{j2\pi }}f}}.$$
+
In the right graph the imaginary spectral function&nbsp; $X(f)$&nbsp; is shown as a blue curve.&nbsp; You can see that&nbsp; $\vert X(f) \vert$&nbsp; decreases continuously with increasing frequency.
 
Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei $f$ = 0 mit dem Gewicht 1/2. Hierauf wird im Beispiel zum Abschnitt Zuordnungssatz (Kapitel 3.3) noch im Detail eingegangen.
 
  
{{end}}
+
&rArr; &nbsp; The green curve in the left graph shows the signal&nbsp; $y(t)$,&nbsp; which differs from&nbsp; $x(t)$&nbsp; only in the negative time section.
  
 +
*In this area&nbsp; $y(t) = 0$.&nbsp; The corresponding spectral function&nbsp; $Y(f)$&nbsp; is only half as large as&nbsp; $X(f)$&nbsp; in the entire range.&nbsp; This is shown in the following calculation:
  
==Das zweiter Fourierintegral==
+
:$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
 +
 +
*In addition there is a Dirac delta function at&nbsp; $f = 0$&nbsp; with weight&nbsp; $1/2$, due to the equal part.&nbsp; This is explained in the example in section&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]].&nbsp; }}
  
Bisher haben wir lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal $x(t)$ die zugehörige Spektralfunktion $X(f)$ berechnet. Nun wenden wir uns der umgekehrten Aufgabe zu, aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ zu ermitteln.
 
  
[[File:P_ID399__Sig_T_3_1_S7_rah.png|Zum zweiten Fourierintegral]]
+
==The second Fourier integral==
 +
<br>
 +
Up to now,&nbsp; it has only been shown how to calculate the corresponding spectral function&nbsp; $X(f)$&nbsp; for an aperiodic,&nbsp; pulse-like signal&nbsp; $x(t)$.&nbsp;
 +
[[File:EN_Sig_T_3_1_S7.png|right|frame|On the second Fourier integral]]
 +
Now we turn to the reverse task,&nbsp; namely: &nbsp; How to determine the time function&nbsp; $x(t)$&nbsp; from the spectral function&nbsp; $X(f)$?
  
Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal $x(t)$ als Fourierreihe schreiben, wobei nun der Grenzübergang $f_0' \to 0$ zu berücksichtigen ist:
+
With the same designations as in the first sections of this chapter,&nbsp; you can write the signal&nbsp; $x(t)$&nbsp; as Fourier series,&nbsp; where now the limit&nbsp; ${f_0}' \to 0$&nbsp; is to be considered:
 
   
 
   
$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j 2  \pi  \it\nu {f_{\rm 0}}' t}.$$
+
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} \hspace{0.03cm}\pi  \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$
  
Erweitert man nun sowohl den Zähler als auch den Nenner um $f_0'$, so erhält man:
+
If you extend both the numerator and the denominator by&nbsp; ${f_0}'$,&nbsp; you get
 
   
 
   
$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j 2 \pi  \it \nu {f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
+
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi  \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
 
 
Der Grenzübergang  $f_0' \to 0$ hat nun folgende Auswirkungen:
 
*Die (unendliche) Summe wird zu einem Integral, wobei  $f_0'$ formal durch die differenzielle Größe d$f$ (Integrationsvariable) zu ersetzen ist.
 
*Die Größe  $v \cdot f_0'$ im Exponenten beschreibt die physikalische Frequenz $f$.
 
*Der Quotient $D_v'/f_0'$ ergibt die Spektralfunktion $X(f)$ bei der Frequenz $f$.
 
  
Unter Berücksichtigung dieser Eigenschaften kommt man zum ''zweiten Fourierintegral''.
+
The limit crossing&nbsp; ${f_0}' \to 0$&nbsp; has the following effects:
 +
#The&nbsp; $($infinite$)$&nbsp; sum becomes an integral,&nbsp; where&nbsp;  ${f_0}'$&nbsp; has to be formally replaced by the differential quantity&nbsp; $\text{d}f$&nbsp; $($integration variable$)$.
 +
#The quantity &nbsp;  $\nu \cdot{f_0}'$&nbsp; in the exponent describes the physical frequency&nbsp; $f$.
 +
#The quotient&nbsp; ${D_{\nu}}'/{f_0}'$&nbsp; yields the spectral function&nbsp; $X(f)$&nbsp; at the frequency&nbsp; $f$.
  
{{Definition}}
 
Ist die Spektralfunktion $X(f)$ eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige '''Zeitfunktion''':
 
  
$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{{+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f$$
+
Taking these properties into account, the&nbsp; &raquo;second Fourier integral&laquo;&nbsp; is obtained.
  
⇒    '''Zweites Fourierintegral'''.
+
{{BlaueBox|TEXT= 
 +
$\text{Second Fourier Integral:}$&nbsp; If the spectral function&nbsp; $X(f)$&nbsp; of an aperiodic and energy-limited signal is given,&nbsp; then the corresponding&nbsp; &raquo;'''time signal'''&laquo;&nbsp; is:
  
{{end}}
+
:$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$}}
  
  
==Aufgaben zum Kapitel==
 
  
[[Aufgaben:3.1 Spektrum des Exponentialimpulses]]
+
==Exercises for the Chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|Exercise 3.1: Spectrum of the Exponential Pulse]]
  
[[Aufgaben:3.2 Vom Spektrum zum Signal]]
+
[[Aufgaben:Exercise_3.1Z:_Spectrum_of_the_Triangular_Pulse| Exercise 3.1Z: Spectrum of the Triangular Pulse]]
3. Aperiodische Signale - Impulse
 
  
    3.1 Spektrum des Exponentialimpulses
+
[[Aufgaben:Exercise_3.2:_From_the_Spectrum_to_the_Signal|Exercise 3.2: From the Spectrum to the Signal]]
    3.1Z Spektrum des Dreieckimpulses
 
    3.2 Vom Spektrum zum Signal
 
    3.2Z si^2-Spektrum mit Diracs
 
    3.3 Vom Signal zum Spektrum
 
    3.3Z Rechteck- und Diracimpuls
 
    3.4 Trapezspektrum bzw. -impuls
 
    3.4Z Trapez, Rechteck und Dreieck
 
    3.5 Differentiation eines Dreicksignals
 
    3.5Z Integration von Diracfunktionen
 
  
 +
[[Aufgaben:Exercise_3.2Z:_Sinc-Squared-Spectrum_with_Diracs| Exercise 3.2Z: Sinc&ndash;Squared Spectrum with Diracs]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:38, 14 June 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


In the second chapter periodic signals were described by different harmonic oscillations  (»Fourier series«). 

If one reduces – at least mentally – the repetition frequency of a periodic signal more and more,  i.e.,  the period duration becomes longer and longer,  then one comes from the periodic signal to the unique  »aperiodic signal«  – often also called  »pulse«.

In the following,  such aperiodic and pulse–shaped signals are considered and mathematically described in the time and frequency domain.

The chapter contains in detail:

  1. The derivation of the two  »Fourier integrals«  from the Fourier series,
  2. the extension of the Fourier integral to the  »Fourier transform«  by means of distributions,
  3. »some  special cases«  of pulses:  »rectangular pulse«  and  »Gaussian pulse«,
  4. the  »laws  of Fourier transform«,  and finally
  5. the meaning of the  »convolution operation«  and its various applications.


»Laplace transform«  and  »Hilbert transform«,  which are only applicable to causal signals or systems,  will be treated in the second book  »Linear Time-invariant Systems«.


Properties of aperiodic signals


In the last chapter periodic signals were considered.  The essential characteristic of these signals is,  that you can specify a  period duration  $T_0$  for them.  If such a period duration cannot be indicated or – which is the same in practice – has an infinitely large value  $T_0$,  one speaks of an  »aperiodic signal«.

For the present chapter  »Aperiodic Signals – Pulses»  the following conditions should apply:

  1. The considered signals  $x(t)$  are  aperiodic  and  "energy-limited":   They possess a finite energy  $E_x$  and a negligible  $($medium$)$  power  $P_x$.
  2. Often the energy of these signals is concentrated on a relatively short time range,  so that one also speaks of  »pulse-like signals«  or  »pulses«.


Energy-limited signal  $x_1(t)$  and
power-limited signal  $x_2(t)$

$\text{Example 1:}$  The figure shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$  as an example of an aperiodic and time-limited signal. This pulse has

  1. the finite signal energy   ⇒   here:   $E_1=A^2 \cdot T$,  and
  2. the power  $P_1=0$.



A power-limited signal,  for example the cosine signal  $x_2(t)$  shown below,  has

  1. always a finite power   ⇒   here:   $P_2=A^2/2$,  and
  2. thus also an infinitely large signal energy:   $E_2 \to \infty$.


Closer examination of the Fourier coefficients


We assume a periodic signal  $x_{\rm P}(t)$  with period duration  $T_0$  which corresponds to the explanations in section  »Complex Fourier series«

Periodic signal  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  and its line spectra
  • This signal can be described as follows:
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j 2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  • The Fourier coefficients are generally complex $($with  $D_{-n}=D_n^\ast)$:
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  • The corresponding spectral function  $X_{\rm P}(f)$  is a  »line spectrum«  with spectral lines in the distance  $f_0=1/T_0$:
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  • The upper figure shows on the left the periodic time signal  $x_{\rm P}(t)$  and on the right the corresponding magnitude spectrum  $|X_{\rm P}(f)|$.  This is merely a schematic sketch.
  • If   $x_{\rm P}(t)$ is a real and even function, then  $X_{\rm P}(f)$  is also real and even.  The equation  $X_{\rm P}(f) = |X_{\rm P}(f)|$  is only valid if all spectral lines are positive.


In the lower figure on the left side another periodic signal  ${x_{\rm P}}\hspace{0.01cm}'(t)$  with double period duration  ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$  is displayed.  The following applies to this signal:

$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j} 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$

In the range from  $-T_0/2$  to  $+T_0/2$  the two signals  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  are identical. 

We will also consider the spectral function  ${X_{\rm P} }'(f)$  according to the right sketch:

  • Due to the double period duration  $({T_0}' = 2 \cdot T_0)$  the spectral lines are now closer together  $({f_0}' = f_0/2)$.
  • Both red marked coefficients  $D_n$  und  ${D_{2n}}'$ belong to the same physical frequency   $f = n \cdot f_0 = 2n \cdot {f_0}'$.


We recognize by a comparison of the two coefficients

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
  1. ${x_{\rm P}}'(t) \equiv 0$   between  $T_0/2$  and  ${T_0}'/2$  and also in a symmetrical interval for negative times.
  2. Therefore the integration limits can be restricted to  $\pm T_0/2$. 
  3. Inside the new integration limits:  ${x_{\rm P}}'(t)$  can be replaced by  $x_{\rm P}(t)$.
  4. If we set  ${T_0}' = 2T_0$  in the above equation,  we get:
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2} .$$

$\text{We summarize this result briefly:}$ 

  • The spectral line of the signal  ${x_{\rm P} }'(t)$  at frequency  $f = n \cdot {f_0}'$  is denoted by  ${D_{2n} }'$  $($see lower graph on the right$)$.
  • This line has exactly half the size of the spectral line  $D_n$  of the signal  $x_{\rm P}(t)$  at the same physical frequency  $f$  $($see upper graph on the right$)$.
  • The spectral function  ${X_{\rm P} }'(f)$  has opposite  $X_{\rm P}(f)$  additional spectral lines at  $(n + 1/2) \cdot f_0$  $($see lower graph on the left$)$.
  • These additional lines lead to the fact that in the time domain every second  pulse  of  $x_{\rm P}(t)$  –   located by  $n \cdot T_0$  $(n$ odd$)$  –   is cancelled.


From the periodic to the aperiodic signal


We now take up the considerations in the previous section and select the period duration  ${T_0}'$  of  ${x_{\rm P}}'(t)$  generally by an integer factor  $k$  greater than the period duration  $T_0$  of  ${x_{\rm P}}(t)$.  Then the previous statements can be generalized:

From the periodic to the aperiodic signal
  • The line spacing is smaller for  ${X_{\rm P}}'(f)$  by the factor  $k$  than for the spectrum  ${X_{\rm P}}(f)$.
  • To emphasize this fact,  we denote the discrete frequency variable of function  ${X_{\rm P}}'(f)$  with  $\nu$  instead of  $n$.  The following applies:  
$$\nu=k \cdot n.$$
  • It applies for the red marked spectral line of signal  ${x_{\rm P}}'(t)$  at frequency  $f=n \cdot f_0 =\nu \cdot {f_0}'$:
$${D_\nu}' = {1}/{k} \cdot D_n.$$
  • If one now chooses   –   as shown schematically in the graph   –   the factor  $k$  and thus the period duration  ${T_0}'$  always larger and finally lets it go to infinity,  then
  1. the periodic signal  ${x_{\rm P}}(t)$  changes to the aperiodic signal  $x(t)$,
  2. the line spectrum  ${X_{\rm P}}(f)$  can be replaced by the continuous spectrum  $X(f)$.


The first Fourier integral


Concerning the spectral functions  $X_{\rm P}(f)$  and  $X(f)$  the following statements can be made:

  • The individual spectral lines now lie as close together as desired  $({f_0}'=1/{T_0}' \to 0)$.
  • In the spectral function  $X(f)$  all possible  $($not only discrete$)$  frequencies now occur within certain intervals   ⇒   $X(f)$  is no longer a line spectrum.
  • The contribution of each individual frequency  $f$  to the signal  $x(t)$ is negligibly small  $(k \to \infty,\ {D_{\nu}}' \to 0)$.
  • Because of the infinite number of frequencies there is a finite result in total.
  • Instead of calculating the Fourier coefficients  ${D_{\nu}}'$:  Now a spectral density  $X(f)$  is calculated.  For the frequency  $f=\nu\cdot {f_0}'$  then applies:
$$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
  • The spectral function  $X(f)$  of the aperiodic signal  $x(t)$  is visible in the spectrum  $X_{\rm P}(f)$  of the periodic signal  $x_{\rm P}(t)$ as envelope  $($see graphics in the last section$)$.
  • In the lower graphic  ${D_{\nu}}'$  corresponds to the red-shaded area of the frequency interval around  $\nu \cdot {f_0}'$  with width ${f_0}'$.


If you use the equations given in the last section, you get

$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$

Through the common limit crossing   $({T_0}' \to \infty, \ {f_0}' \to 0)$  the following transformations will happen:

  1. From the periodic signal  $x_{\rm P}(t)$  to the aperiodic signal  $x(t)$.
  2. From the discrete frequency  $\nu \cdot {f_0}'$  to the continuous frequency variable  $f$.


Thus,  a fundamental definition is obtained,  which allows the calculation of the spectral function of an aperiodic time function.  The name of this spectral transformation goes back to the French physicist  »$\text{Jean-Baptiste Joseph Fourier}$«.

$\text{First Fourier Integral:}$ 

The  »spectral function«  $($or short:  the  »spectrum«$)$  of an aperiodic and simultaneously energy limited signal  $x(t)$  is to be calculated as follows

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$


The following  $($German language$)$  learning video should clarify the statements of the last sections:
       »Kontinuierliche und diskrete Spektren«   ⇒   "Continuous and discrete spectra".

$\text{Example 2:}$  Given is the sketched time course  $x(t)$.  The corresponding spectrum  $X(f)$  is searched for using the first Fourier integral:

Rectangular pulse  $x(t)$
  • From the above representation we can see,  that for  $\vert t \vert > T/2$  the signal is  $x(t) = 0$.
  • This means that the integration interval can be limited to the range  $\pm T/2$.
  • This results in the approach:
$$ \begin{align*} X(f) & = A \cdot \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
  • If you extend numerator and denominator with  $T$,  you get:
$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$


$\text{Definitions:}$  For abbreviation we define the following functions:

  • »sinc–function«  $($predominantly used in Anglo-American literature$)$
$${\rm sinc}( x ) = {\sin (\pi x) }/(\pi x ),$$
  • »si–function«  or  »$\text{splitting function}$«  $($predominantly used in German literature$)$
$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$


Note:   In our  $\rm LNTwww$  we mostly use the function  ${\rm si}(x)$,  but important results are also given in the  ${\rm sinc}(x)$ form.


Fourier transform


The spectrum  $X(f)$  of a signal  $x(t)$  is according to the  »first Fourier integral«:

$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

As shown in the last section with a simple example,  this integral can be solved easily for an energy-limited signal  $x(t)$.  For non-energy limited signals,  for example


we observe a divergence of the Fourier integral.  Including a bilateral declining auxiliary function  $\varepsilon (t)$,  however,  convergence can be forced:

$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2 \pi}\it ft} \,{\rm d}t.$$

Such non-energy limited signals lead to so-called  »Dirac delta functions«  in the spectral domain,  sometimes also called  »distributions«.

$\text{Definition:}$  The generally valid functional relation  $X(f) = F\big [x(t) \big ]$  is called  »Fourier Transform«.  For the short notation we use  $($with the  "white dot"  for the time domain and the  "filled dot"  for the spectral domain$)$:

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

With a increasing signal,  however,  convergence is only achieved as long as the time function increases less than exponentially.


Jump function and associated spectrum

$\text{Example 3:}$  We consider an acausal jump function

$$x (t) = \left\{ {\begin{array}{*{20}c} { +1 } & { {\rm{for} }\quad t > 0,} \\ {-1 } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

This signal is shown in blue color in the left sketch.

Since the signal  $x(t)$  extends to infinity on both sides, we must add a suitable convergence factor  $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$  with  $($  $\varepsilon > 0)$  in order to calculate the Fourier transform for both sections.  The resulting time function is then

$$x_\varepsilon (t) = \left\{ {\begin{array}{*{20}c} { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,} \\ { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm} t} } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

Following a similar procedure as in section  »Dirac delta function in the frequency domain«  results for the corresponding spectral function:

$$X_\varepsilon (f) = \frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2 + \left( {2{\rm{\pi } }f} \right)^2 } }.$$

But actually we are interested in the spectrum of the  »jump function«

$$x(t) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon (t).$$

Therefore,  the spectral function  $X(f) =\text{F}\big[x(t)\big]$  has to be determined as limit value of  $X_\varepsilon(f)$  for  $\varepsilon \to 0$:

$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$

In the right graph the imaginary spectral function  $X(f)$  is shown as a blue curve.  You can see that  $\vert X(f) \vert$  decreases continuously with increasing frequency.

⇒   The green curve in the left graph shows the signal  $y(t)$,  which differs from  $x(t)$  only in the negative time section.

  • In this area  $y(t) = 0$.  The corresponding spectral function  $Y(f)$  is only half as large as  $X(f)$  in the entire range.  This is shown in the following calculation:
$$Y(f) = \mathop {\lim }\limits_{\varepsilon \to 0 } Y_\varepsilon (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
  • In addition there is a Dirac delta function at  $f = 0$  with weight  $1/2$, due to the equal part.  This is explained in the example in section  »Assignment Theorem«


The second Fourier integral


Up to now,  it has only been shown how to calculate the corresponding spectral function  $X(f)$  for an aperiodic,  pulse-like signal  $x(t)$. 

On the second Fourier integral

Now we turn to the reverse task,  namely:   How to determine the time function  $x(t)$  from the spectral function  $X(f)$?

With the same designations as in the first sections of this chapter,  you can write the signal  $x(t)$  as Fourier series,  where now the limit  ${f_0}' \to 0$  is to be considered:

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2 \hspace{0.03cm}\pi \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$

If you extend both the numerator and the denominator by  ${f_0}'$,  you get

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty} ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$

The limit crossing  ${f_0}' \to 0$  has the following effects:

  1. The  $($infinite$)$  sum becomes an integral,  where  ${f_0}'$  has to be formally replaced by the differential quantity  $\text{d}f$  $($integration variable$)$.
  2. The quantity   $\nu \cdot{f_0}'$  in the exponent describes the physical frequency  $f$.
  3. The quotient  ${D_{\nu}}'/{f_0}'$  yields the spectral function  $X(f)$  at the frequency  $f$.


Taking these properties into account, the  »second Fourier integral«  is obtained.

$\text{Second Fourier Integral:}$  If the spectral function  $X(f)$  of an aperiodic and energy-limited signal is given,  then the corresponding  »time signal«  is:

$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$


Exercises for the Chapter


Exercise 3.1: Spectrum of the Exponential Pulse

Exercise 3.1Z: Spectrum of the Triangular Pulse

Exercise 3.2: From the Spectrum to the Signal

Exercise 3.2Z: Sinc–Squared Spectrum with Diracs