Exponentially Distributed Random Variables

From LNTwww

Einseitige Exponentialverteilung

Eine kontinuierliche Zufallsgröße $x$ nennt man (negativ-)exponentialverteilt, wenn sie nur nicht-negative Werte annehmen kann und die WDF für $x$ > 0 folgenden Verlauf hat: $$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$


Das linke Bild zeigt die Wahrscheinlichkeitsdichtefunktion (WDF) einer exponentialverteilten Zufallsgröße $x$. Hervorzuheben ist:

  • Definitionsgemäß gilt $f_{\rm x}(0) = λ/2.$
  • Je größer der Verteilungsparameter $λ$ ist, um so steiler erfolgt der Abfall.


WDF und VTF einer exponentialverteilten Zufallsgröße

Für die Verteilungsfunktion (rechtes Bild) erhält man für $r$ > 0 durch Integration über die WDF: $$F_x(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$

Die Momente der Exponentialverteilung sind allgemein gleich $m_k = k!/λ^k.$ Daraus und aus dem Satz von Steiner ergibt sich für den Mittelwert und die Streuung: $$m_1=\frac{1}{\lambda},$$ $$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}=\frac{1}{\lambda}.$$

Die Exponentialverteilung hat große Bedeutung für Zuverlässigkeitsuntersuchungen, wobei in diesem Zusammenhang auch der Begriff Lebensdauerverteilung üblich ist. Bei diesen Anwendungen ist die Zufallsgröße oft die Zeit $t$, die bis zum Ausfall einer Komponente vergeht. Desweiteren ist anzumerken, dass die Exponentialverteilung eng mit der Poissonverteilung in Zusammenhang steht.