Difference between revisions of "Theory of Stochastic Signals/Generalization to N-Dimensional Random Variables"

From LNTwww
 
(38 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zufallsgrößen mit statistischen Bindungen
+
|Untermenü=Random Variables with Statistical Dependence
|Vorherige Seite=Kreuzkorrelationsfunktion und Kreuzleistungsdichte
+
|Vorherige Seite=Cross-Correlation Function and Cross Power Density
|Nächste Seite=Stochastische Systemtheorie
+
|Nächste Seite=Stochastic System Theory
 
}}
 
}}
==Korrelationsmatrix==
+
==Correlation matrix==
Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit $N$ Dimensionen bietet sich zweckmäßigerweise eine Vektor- bzw. Matrixdarstellung an. Für die folgende Beschreibung wird vorausgesetzt:
+
<br>
*Die $N$–dimensionale Zufallsgröße wird als Vektor dargestellt:
+
So far,&nbsp; only statistical bindings between two&nbsp; (scalar)&nbsp; random variables have been considered.&nbsp;
:$${\mathbf{x}} = [\hspace{0.03cm}x_1, \hspace{0.03cm}x_2,
 
\hspace{0.1cm}... \hspace{0.1cm}, \hspace{0.03cm}x_N]^{\rm T}.$$
 
:Hierbei ist $\mathbf{x}$ ein Spaltenvektor, was aus dem Zusatz „T” – dies steht für „transponiert” – des angegebenen Zeilenvektors hervorgeht.
 
*Die $N$ Komponenten $x_i$ seien jeweils eindimensionale reelle Gaußsche Zufallsgrößen.  
 
  
 +
For the general case of a random variable with&nbsp; $N$&nbsp; dimensions,&nbsp; a vector representation or matrix representation is convenient.&nbsp; For the following description it is assumed:
 +
*The&nbsp; $N$-dimensional random variable is represented as a vector:
 +
:$${\mathbf{x}} = \big[\hspace{0.03cm}x_1, \hspace{0.03cm}x_2,
 +
\hspace{0.1cm}\text{...} \hspace{0.1cm}, \hspace{0.03cm}x_N \big]^{\rm T}.$$
 +
:Here&nbsp; $\mathbf{x}$&nbsp; is a column vector,&nbsp; which can be seen from the addition&nbsp; $\rm T$&nbsp; - this stands for&nbsp; "transposed"&nbsp; - of the specified row vector.
 +
*Let&nbsp; $N$&nbsp; components&nbsp; $x_i$&nbsp; each be one-dimensional real Gaussian random variables.
  
Statistische Bindungen zwischen den $N$ Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
 
:$${\mathbf{R}} =\left[ R_{ij} \right] = \left[ \begin{array}{cccc}R_{11} & R_{12} & \cdots & R_{1N} \\ R_{21} & R_{22}& \cdots & R_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ R_{N1} & R_{N2} & \cdots & R_{NN}  \end{array} \right] .$$
 
Die $N^2$ Elemente dieser $N×N$-Matrix geben jeweils das gemeinsame Moment erster Ordnung zwischen zwei Komponenten an:
 
:$$R_{ij}= {{\rm E}[x_i \cdot x_j ]} = R_{ji} .$$
 
In Vektorschreibweise lautet somit die Korrelationsmatrix:
 
:$$\mathbf{R}= {\rm E[\mathbf{x} \cdot {\mathbf{x}}^{\rm T} ]} .$$
 
Da $\mathbf{x}$ ein Spaltenvektor mit $N$ Dimensionen ist und somit der transponierte Vektor $\mathbf{x}^{\rm T}$ ein Zeilenvektor gleicher Länge, ergibt das Produkt $\mathbf{x} · \mathbf{x}^{\rm T}$ eine $N×N$-Matrix. Dagegen wäre $\mathbf{x}^{\rm T}· \mathbf{x}$ eine $1×1$-Matrix, also ein Skalar. Für den hier nicht weiter betrachteten Sonderfall komplexer Komponenten $x_i$ sind auch die Matrixelemente komplex:
 
:$$R_{ij}= {{\rm E}[x_i \cdot x_j^{\star} ]} = R_{ji}^{\star} .$$
 
Die Realteile der Korrelationsmatrix sind weiterhin symmetrisch zur Hauptdiagonalen, während sich die dazugehörigen Imaginärteile durch das Vorzeichen unterscheiden.
 
  
==Kovarianzmatrix==
+
{{BlaueBox|TEXT=
Man kommt von der Korrelationsmatrix $\mathbf{R} =\left[ R_{ij} \right]$ zur so genannten Kovarianzmatrix
+
$\text{Definition:}$&nbsp;
:$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} K_{11} & K_{12} & \cdots & K_{1N} \\ K_{21} & K_{22}& \cdots & K_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ K_{N1} & K_{N2} & \cdots & K_{NN}  \end{array} \right] ,$$
+
Statistical bindings between the&nbsp; $N$&nbsp; random variables are fully described by the&nbsp; &raquo;'''correlation matrix'''&laquo;:&nbsp;
wenn die Matrixelemente $K_{ij} = {\rm E}[(x_i – m_i) · (x_j – m_j)]$ jeweils ein Zentralmoment erster Ordnung angeben. Mit dem Vektor $\mathbf{m} = [m_1, m_2, ... , m_N]^{\rm T}$ kann somit auch geschrieben werden:  
+
:$${\mathbf{R} } =\big[ R_{ij} \big] = \left[ \begin{array}{cccc}R_{11} & R_{12} & \cdots & R_{1N} \\ R_{21} & R_{22}& \cdots & R_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ R_{N1} & R_{N2} & \cdots & R_{NN}  \end{array} \right] .$$
:$$\mathbf{K}= {{\rm E}[(\mathbf{x} - \mathbf{m})  (\mathbf{x} - \mathbf{m})^{\rm T} ]} .$$
+
*The&nbsp; $N^2$&nbsp; elements of this&nbsp; $N×N$&nbsp; matrix each indicate the first-order joint moment between two components:
 +
:$$R_{ij}= { {\rm E}\big[x_i \cdot x_j \big] } = R_{ji} .$$
 +
*Thus,&nbsp; in vector notation,&nbsp; the correlation matrix is:  
 +
:$$\mathbf{R}= {\rm E\big[\mathbf{x} \cdot {\mathbf{x} }^{\rm T} \big] } .$$}}
  
Es soll ausdrücklich darauf hingewiesen werden, dass $m_1$ den Mittelwert der Komponente $x_1$ und $m_2$ den Mittelwert von $x_2$ bezeichnet – nicht etwa das Moment erster bzw. zweiter Ordnung.
 
  
 +
'''Please note''':
 +
*$\mathbf{x}$&nbsp; is a column vector with&nbsp; $N$&nbsp; dimensions and the transposed vector&nbsp; $\mathbf{x}^{\rm T}$&nbsp; a row vector of equal length&nbsp; &rArr; &nbsp; the product&nbsp; $\mathbf{x} ⋅ \mathbf{x}^{\rm T}$&nbsp; gives a&nbsp; $N×N$&ndash;matrix.
 +
*In contrast&nbsp; $\mathbf{x}^{\rm T}⋅ \mathbf{x}$&nbsp; would be a&nbsp; $1×1$&ndash;matrix,&nbsp; i.e. a scalar.
 +
*For the special case of complex components&nbsp; $x_i$&nbsp; not considered further here,&nbsp; the matrix elements are also complex:
 +
:$$R_{ij}= {{\rm E}\big[x_i \cdot x_j^{\star} \big]} = R_{ji}^{\star} .$$
 +
*The real parts of the correlation matrix&nbsp; ${\mathbf{R} }$&nbsp; are still symmetric about the main diagonal, while the imaginary parts differ by sign.
  
Die Matrix $\mathbf{K}$ zeigt bei reellen mittelwertfreien Gauß–Größen folgende weitere Eigenschaften:  
+
 
*Das Element der $i$-ten Zeile und $j$-ten Spalte lautet mit den beiden Streuungen $σ_i$ und $σ_j$ und dem [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Korrelationskoeffizient|Korrelationskoeffizienten]] $ρ_{ij}$. Formelmäßig gilt $K_{ij} = σ_i · σ_j · ρ_{ij} = K_{ji}.$  
+
==Covariance matrix==
*Berücksichtigt man noch die Beziehung $ρ_{ii} =$ 1, so erhält man für die Kovarianzmatrix:  
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; One moves from the correlation matrix&nbsp; $\mathbf{R} =\left[ R_{ij} \right]$&nbsp; to the so-called&nbsp; &raquo;'''covariance matrix'''&laquo;
 +
:$${\mathbf{K} } =\big[ K_{ij} \big] = \left[ \begin{array}{cccc}K_{11} & K_{12} & \cdots & K_{1N} \\ K_{21} & K_{22}& \cdots & K_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ K_{N1} & K_{N2} & \cdots & K_{NN}  \end{array} \right] ,$$
 +
 
 +
if the matrix elements&nbsp; $K_{ij} = {\rm E}\big[(x_i - m_i) - (x_j - m_j)\big]$&nbsp; each specify a&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Central_moments|$\text{first order central moment}$]].
 +
 
 +
*Thus,&nbsp; with the vector&nbsp; $\mathbf{m} = [m_1, m_2$, ... , $m_N]^{\rm T}$&nbsp; can also be written:
 +
:$$\mathbf{K}= { {\rm E}\big[(\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\rm T} \big] } .$$
 +
 
 +
*It should be explicitly noted that&nbsp; $m_1$&nbsp; denotes the mean value of the component&nbsp; $x_1$&nbsp; and&nbsp; $m_2$&nbsp; denotes the mean value&nbsp; of $x_2$&nbsp; - not the first or second order moment. }}
 +
 
 +
 
 +
The covariance matrix&nbsp; $\mathbf{K}$&nbsp; shows the following further properties for real zero mean Gaussian variables:  
 +
*The element of&nbsp; $i$-th row and&nbsp; $j$-th column is with the two standard deviations&nbsp; $σ_i$&nbsp; and&nbsp; $σ_j$&nbsp; and the&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Correlation_coefficient|$\text{correlation coefficient}$]]&nbsp; $ρ_{ij}$:
 +
:$$K_{ij} = σ_i σ_j ρ_{ij} = K_{ji}.$$  
 +
*Adding the relation&nbsp; $ρ_{ii} = 1$, we obtain for the covariance matrix:  
 
:$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc}
 
:$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc}
\sigma_{1}^2 & \sigma_{1}\sigma_{2}\rho_{12} & \cdots & \sigma_{1}\sigma_{N}\rho_{1N} \\
+
\sigma_{1}^2 & \sigma_{1}\cdot \sigma_{2}\cdot\rho_{12} & \cdots & \sigma_{1}\cdot \sigma_{N} \cdot \rho_{1N} \\
\sigma_{2}\sigma_{1}\rho_{21} & \sigma_{2}^2& \cdots & \sigma_{2}\sigma_{N}\rho_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{N}\sigma_{1}\rho_{N1} & \sigma_{N}\sigma_{2}\rho_{N2} &
+
\sigma_{2} \cdot \sigma_{1} \cdot \rho_{21} & \sigma_{2}^2& \cdots & \sigma_{2} \cdot \sigma_{N} \cdot\rho_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{N} \cdot \sigma_{1} \cdot \rho_{N1} & \sigma_{N}\cdot \sigma_{2} \cdot\rho_{N2} &
 
\cdots & \sigma_{N}^2 \end{array} \right] .$$
 
\cdots & \sigma_{N}^2 \end{array} \right] .$$
*Aufgrund der Beziehung $ρ_{ij} = ρ_{ji}$ ist die Kovarianzmatrix bei reellen Größen symmetrisch zur Hauptdiagonalen. Bei komplexen Größen würde dagegen $ρ_{ij} = ρ_{ji}^{\star}$ gelten.  
+
*Because of the relation&nbsp; $ρ_{ij} = ρ_{ji}$&nbsp; the covariance matrix is always symmetric about the main diagonal for real quantities.&nbsp; For complex quantities,&nbsp; $ρ_{ij} = ρ_{ji}^{\star}$&nbsp; would hold.  
  
  
{{Beispiel}}''':'''&nbsp; Wir betrachten die drei Kovarianzmatrizen:  
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider the three covariance matrices:  
 
:$${\mathbf{K}_2} = \left[ \begin{array}{cc}
 
:$${\mathbf{K}_2} = \left[ \begin{array}{cc}
 
1 & -0.5 \\
 
1 & -0.5 \\
 
-0.5 & 1
 
-0.5 & 1
 
\end{array} \right],
 
\end{array} \right],
\hspace{0.2cm}{\mathbf{K}_3} = 4 \cdot \left[ \begin{array}{ccc}
+
\hspace{0.9cm}{\mathbf{K}_3} = 4 \cdot \left[ \begin{array}{ccc}
 
1 & 1/2 & 1/4\\
 
1 & 1/2 & 1/4\\
 
1/2 & 1 & 3/4 \\
 
1/2 & 1 & 3/4 \\
 
1/4 & 3/4 & 1
 
1/4 & 3/4 & 1
\end{array}\right], \hspace{0.2cm}{\mathbf{K}_4} =
+
\end{array}\right], \hspace{0.9cm}{\mathbf{K}_4} =
 
\left[
 
\left[
 
\begin{array}{cccc}
 
\begin{array}{cccc}
Line 61: Line 79:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
* $\mathbf{K}_2$ beschreibt eine 2D–Zufallsgröße, wobei der Korrelationskoeffizient $ρ$ zwischen den zwei Komponenten $–0.5$ beträgt und beide Komponenten die Streuung $σ = 1$ aufweisen.  
+
* $\mathbf{K}_2$&nbsp; describes a two-dimensional random variable,&nbsp; where the correlation coefficient&nbsp; $ρ$&nbsp; between the two components&nbsp; is $-0.5$&nbsp; and both components have the standard deviation&nbsp; $σ = 1$.  
*Bei der 3D-Zufallsgröße gemäß $\mathbf{K}_3$ haben alle Komponenten die gleiche Streuung $σ = 2$. Die stärksten Bindungen bestehen zwischen $x_2$ und $x_3$, wobei $ρ_{23} = 3/4$ gilt.  
+
*For the three-dimensional random variable according to&nbsp; $\mathbf{K}_3$&nbsp; all components have the same standard deviation&nbsp; $σ = 2$&nbsp; (please note the prefactor).&nbsp; The strongest bindings here are between&nbsp; $x_2$&nbsp; and&nbsp; $x_3$,&nbsp; where&nbsp; $ρ_{23} = 3/4$&nbsp; holds.  
*Die vier Komponenten der durch $\mathbf{K}_4$ gekennzeichneten Zufallsgröße sind unkorreliert, bei Gaußscher WDF auch statistisch unabhängig. Die Varianzen sind $σ_i^2 = i^2$ für $i = 1$, ... , $4$ &nbsp; &rArr; &nbsp; Streuungen $σ_i = i$.  
+
*The four components of the random variable denoted by&nbsp; $\mathbf{K}_4$&nbsp; are uncorrelated,&nbsp; with Gaussian PDF also statistically independent.&nbsp; <br>The variances  are&nbsp; $σ_i^2 = i^2$&nbsp; for&nbsp; $i = 1$, ... , $4$&nbsp; &nbsp; &rArr; &nbsp; standard deviations&nbsp; $σ_i = i$. }}
  
{{end}}
+
==Relationship between covariance matrix and PDF==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''probability density function'''&laquo;&nbsp; $\rm (PDF)$&nbsp; of an&nbsp; $N$-dimensional Gaussian random variable&nbsp; $\mathbf{x}$&nbsp; is:
 +
:$$f_\mathbf{x}(\mathbf{x})= \frac{1}{\sqrt{(2 \pi)^N \cdot
 +
\vert\mathbf{K}\vert } }\hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-1/2\hspace{0.05cm}\cdot \hspace{0.05cm}(\mathbf{x} -
 +
\mathbf{m})^{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}\mathbf{K}^{-1} \hspace{0.05cm}\cdot \hspace{0.05cm}(\mathbf{x} -
 +
\mathbf{m}) } .$$
  
==Zusammenhang zwischen Kovarianzmatrix und WDF==
+
Here denote:
Die ''Wahrscheinlichkeitsdichtefunktion'' einer $N$-dimensionalen Gaußschen Zufallsgröße $\mathbf{x}$ lautet:
+
* $\mathbf{x}$ &nbsp; &rArr; &nbsp; the column vector of the considered&nbsp; $N$&ndash;dimensional random variable,
:$$\mathbf{f_x}(\mathbf{x})= \frac{1}{\sqrt{(2 \pi)^N \cdot
+
* $\mathbf{m}$ &nbsp; &rArr; &nbsp; the column vector of the associated mean values,
|\mathbf{K}|}}\cdot {\rm exp}{\left[-\frac{1}{2}\cdot(\mathbf{x} -
+
* $\vert \mathbf{K}\vert$ &nbsp; &rArr; &nbsp; the determinant of the&nbsp; $N×N$&nbsp; covariance matrix&nbsp; $\mathbf{K}$ &nbsp; &rArr; &nbsp; a scalar quantity,
\mathbf{m})^{\rm T}\cdot\mathbf{K}^{-1} \cdot(\mathbf{x} -
+
* $\mathbf{K}^{-1}$ &nbsp; &rArr; &nbsp; the inverse of&nbsp; $\mathbf{K}$;&nbsp; this is also an&nbsp; $N×N$&nbsp; matrix.}}  
\mathbf{m}) \right]} .$$
 
  
Hierbei bezeichnen:
 
* $\mathbf{x}$ den Spaltenvektor der betrachteten $N$-dimensionalen Zufallsgröße,
 
* $\mathbf{m}$ den Spaltenvektor der zugehörigen Mittelwerte,
 
* $|\mathbf{K}|$ die Determinante der $N×N$–Kovarianzmatrix $\mathbf{K}$ – eine skalare Größe,
 
* $\mathbf{K}^{−1}$ die Inverse von $\mathbf{K}$; diese ist ebenfalls eine $N×N$-Matrix.
 
  
 +
The multiplications of the row vector&nbsp; $(\mathbf{x} - \mathbf{m})^{\rm T}$,&nbsp; the inverse matrix&nbsp; $\mathbf{K}^{-1}$&nbsp; and the&nbsp; column vector&nbsp; $(\mathbf{x} - \mathbf{m})$&nbsp; yields a scalar in the argument of the exponential function.
  
Die Multiplikationen des Zeilenvektors $(\mathbf{x} – \mathbf{m})^{\rm T}$, der Matrix $\mathbf{K}^{–1}$ und des Spaltenvektors $(\mathbf{x} – \mathbf{m})$ ergibt im Argument der Exponentialfunktion erwartungsgemäß ein Skalar.
+
{{GraueBox|TEXT= 
 
+
$\text{Example 2:}$ &nbsp; We consider as in&nbsp; [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Covariance_matrix|$\text{Example 1}$]]&nbsp; again a four-dimensional random variable&nbsp; $\mathbf{x}$&nbsp; whose covariance matrix is occupied only on the main diagonal:  
 
+
;$${\mathbf{K} } = \left[
{{Beispiel}}''':'''&nbsp; Wir betrachten wie im [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Kovarianzmatrix|Beispiel auf der letzten Seite]] wieder eine 4D-Zufallsgröße $\mathbf{x}$, deren Kovarianzmatrix nur auf der Hauptdiagonalen besetzt ist:  
 
$${\mathbf{K}} = \left[
 
 
\begin{array}{cccc}
 
\begin{array}{cccc}
 
\sigma_{1}^2 & 0 & 0 & 0 \\
 
\sigma_{1}^2 & 0 & 0 & 0 \\
Line 92: Line 110:
 
0 & 0 & 0 & \sigma_{4}^2
 
0 & 0 & 0 & \sigma_{4}^2
 
\end{array} \right].$$
 
\end{array} \right].$$
Deren Determinante ist $|\mathbf{K}| = σ_1^2 · σ_2^2 · σ_3^2 · σ_4^2$. Die inverse Kovarianzmatrix ergibt sich zu:  
+
Their determinant is&nbsp; $\vert \mathbf{K}\vert = σ_1^2 \cdot σ_2^2 \cdot σ_3^2 \cdot σ_4^2$.&nbsp; The inverse covariance matrix results to:  
:$${\mathbf{K}}^{-1} \cdot {\mathbf{K}} = \left[
+
:$${\mathbf{K} }^{-1} \cdot {\mathbf{K } } = \left[
 
\begin{array}{cccc}
 
\begin{array}{cccc}
 
1 & 0 & 0 & 0 \\
 
1 & 0 & 0 & 0 \\
Line 100: Line 118:
 
0 & 0 & 0 & 1
 
0 & 0 & 0 & 1
 
\end{array} \right]
 
\end{array} \right]
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\mathbf{K}}^{-1} =
+
\hspace{0.5cm}\rightarrow \hspace{0.5cm} {\mathbf{K} }^{-1} =
 
\left[
 
\left[
 
\begin{array}{cccc}
 
\begin{array}{cccc}
Line 109: Line 127:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
Für mittelwertfreie Größen $(\mathbf{m = 0})$ lautet somit die WDF:  
+
Thus,&nbsp; for zero mean quantities&nbsp; $(\mathbf{m = 0})$&nbsp; the probability density function&nbsp; $\rm (PDF)$&nbsp; is:
:$$\mathbf{f_{\rm x}}(\mathbf{x})= \frac{1}{{(2 \pi)^2 \cdot \sigma_1\cdot
+
:$$\mathbf{ f_{\rm x} }(\mathbf{x})= \frac{1}{ {(2 \pi)^2 \cdot \sigma_1\cdot
\sigma_2\cdot \sigma_3\cdot \sigma_4}}\cdot {\rm
+
\sigma_2\cdot \sigma_3\cdot \sigma_4} }\cdot {\rm
exp}{\left[-(\frac{x_1^2}{2\sigma_1^2}
+
e}^{-({x_1^2}/{2\sigma_1^2}
\hspace{0.1cm}+\hspace{0.1cm}\frac{x_2^2}{2\sigma_2^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_3^2}{2\sigma_3^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_4^2}{2\sigma_4^2})
+
\hspace{0.1cm}+\hspace{0.1cm}{x_2^2}/{2\sigma_2^2}\hspace{0.1cm}+\hspace{0.1cm}{x_3^2}/{2\sigma_3^2}\hspace{0.1cm}+\hspace{0.1cm}{x_4^2}/{2\sigma_4^2})
\right]} .$$
+
} .$$
Ein Vergleich mit dem Kapitel  [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion_.281.29|Wahrscheinlichkeitsdichte- und Verteilungsfunktion]] zeigt, dass es sich um eine 4D-Zufallsgröße mit statistisch unabhängigen und unkorrelierten Komponenten handelt, da folgende Bedingung erfüllt ist:  
+
A comparison with the chapter &nbsp;[[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Probability_density_function_and_cumulative_distribution_function|"Probability density function and Cumulative distribution function"]]&nbsp; shows that it is a four-dimensional random variable with statistically independent and uncorrelated components,&nbsp; since the following condition is satisfied:  
:$$\mathbf{f_x}(\mathbf{x})= \mathbf{f_{x1}}(\mathbf{x_1})
+
:$$\mathbf{f_x}(\mathbf{x})= \mathbf{f_{x1 } }(\mathbf{x_1}) \cdot \mathbf{f_{x2} }(\mathbf{x_2})
\cdot\mathbf{f_{x2}}(\mathbf{x_2})
+
\cdot \mathbf{f_{x3} }(\mathbf{x_3} ) \cdot \mathbf{f_{x4} }(\mathbf{x_4} )
\cdot\mathbf{f_{x3}}(\mathbf{x_3})
+
.$$
\cdot\mathbf{f_{x4}}(\mathbf{x_4}) .$$
+
 
 +
The case of correlated components is discussed in detail in the &nbsp;[[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Exercises_for_the_chapter|"exercises for the chapter"]]. }}
 +
 
 +
 
 +
The following links refer to two sections at the end of the chapter with basics of matrix operations:
  
Der Fall korrelierter Komponenten wird in den  [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Aufgaben_zum_Kapitel|Aufgaben zu diesem Kapitel]] eingehend behandelt.
+
*[[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|"Determinant of a Matrix"]]  
{{end}}
+
*[[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|"Inverse of a Matrix"]]
  
  
Die folgenden Links verweisen auf zwei Seiten  am Kapitelende mit Grundlagen der Matrizenrechnung:
+
==Eigenvalues and eigenvectors==
 +
<br>
 +
We further assume an&nbsp; $N×N$&nbsp; covariance matrix&nbsp; $\mathbf{K}$&nbsp;.
  
*[[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Determinante_einer_Matrix|Determinante einer Matrix]]
+
{{BlaueBox|TEXT= 
*[[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Inverse_einer_Matrix|Inverse einer Matrix]]
+
$\text{Definition:}$&nbsp; From the&nbsp; $N×N$&nbsp; covariance matrix&nbsp; $\mathbf{K}$&nbsp; the&nbsp; $N$&nbsp; &raquo;'''eigenvalues'''&laquo;&nbsp; $λ_1$, ... , $λ_N$&nbsp; can be calculated as follows:  
 +
:$$\big \vert {\mathbf{K} } - \lambda \cdot {\mathbf{E} }\big \vert = 0.$$
 +
$\mathbf{E}$&nbsp; is the unit diagonal matrix of dimension&nbsp; $N$.}}
  
==Eigenwerte und Eigenvektoren==
 
Wir gehen weiter von einer $N×N$–Kovarianzmatrix $\mathbf{K}$ aus. Hieraus lassen sich die $N$ '''Eigenwerte''' $λ_1$,  ... , $λ_N$  wie folgt berechnen:
 
:$$|{\mathbf{K}} - \lambda \cdot {\mathbf{E}}| = 0.$$
 
$\mathbf{E}$ ist die Einheits-Diagonalmatrix der Dimension $N$.
 
  
{{Beispiel}}''':'''&nbsp; Ausgehend von einer 2×2-Matrix $\mathbf{K}$ mit $K_{11} = K_{22} = 1$ und $K_{12} = K_{21} = 0.8$ erhält man als Bestimmungsgleichung:  
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; Given a&nbsp; $2×2$&nbsp; matrix&nbsp; $\mathbf{K}$&nbsp; with&nbsp; $K_{11} = K_{22} = 1$ &nbsp; and &nbsp; $K_{12} = K_{21} = 0.8$&nbsp; we obtain as a determinant equation:  
 
:$${\rm det}\left[ \begin{array}{cc}
 
:$${\rm det}\left[ \begin{array}{cc}
 
1- \lambda & 0.8 \\
 
1- \lambda & 0.8 \\
Line 141: Line 164:
 
\end{array} \right] = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
 
\end{array} \right] = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
 
(1- \lambda)^2 - 0.64 = 0.$$
 
(1- \lambda)^2 - 0.64 = 0.$$
Die beiden Eigenwerte sind somit $λ_1 = 1.8$ und $λ_2 = 0.2$.  
+
Thus,&nbsp; the two eigenvalues are&nbsp; $λ_1 = 1.8$ &nbsp;and&nbsp; $λ_2 = 0.2$. }}
{{end}}
 
  
  
Mit den so ermittelten Eigenwerten $λ_i (i = 1$, ... , $N)$ kann man die dazugehörigen '''Eigenvektore'''n $\boldsymbol{\xi_i}$ berechnen. <br>Die $N$ vektoriellen Bestimmungsgleichungen lauten dabei:  
+
{{BlaueBox|TEXT= 
:$$({\mathbf{K}} - \lambda_i \cdot {\mathbf{E}}) \cdot
+
$\text{Definition:}$&nbsp; Using the eigenvalues thus obtained&nbsp; $λ_i \ (i = 1$, ... , $N)$&nbsp; one can compute the corresponding&nbsp; &raquo;'''eigenvectors'''&laquo;&nbsp; $\boldsymbol{\xi_i}$.&nbsp;  The&nbsp; $N$&nbsp; vectorial equations of determination are thereby:  
{\boldsymbol{\xi_i}} = 0\hspace{0.5cm}(i= 1, ... , N).$$
+
:$$\big ({\mathbf{K} } - \lambda_i \cdot {\mathbf{E} }\big ) \cdot
 +
{\boldsymbol{\xi_i} } = 0\hspace{0.5cm}(i= 1, \hspace{0.1cm}\text{...} \hspace{0.1cm} , N).$$}}
  
{{Beispiel}}''':'''&nbsp; In Fortsetzung obiger Rechnung ergeben sich die beiden folgenden Eigenvektoren:  
+
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp; Continuing the calculation in&nbsp; $\text{Example 3}$&nbsp; yields the following two eigenvectors:  
 
:$$\left[ \begin{array}{cc}
 
:$$\left[ \begin{array}{cc}
 
1- 1.8 & 0.8 \\
 
1- 1.8 & 0.8 \\
 
0.8 & 1- 1.8
 
0.8 & 1- 1.8
\end{array} \right]\cdot{\boldsymbol{\xi_1}} = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
\end{array} \right]\cdot{\boldsymbol{\xi_1} } = 0 \hspace{0.5cm}\rightarrow \hspace{0.5cm}
{\boldsymbol{\xi_1}} = {\rm const.} \cdot\left[ \begin{array}{c}
+
{\boldsymbol{\xi_1} } = {\rm const.} \cdot\left[ \begin{array}{c}
1 \\
+
+1 \\
1
+
+1
 
\end{array} \right],$$
 
\end{array} \right],$$
 
:$$\left[ \begin{array}{cc}
 
:$$\left[ \begin{array}{cc}
 
1- 0.2 & 0.8 \\
 
1- 0.2 & 0.8 \\
 
0.8 & 1- 0.2
 
0.8 & 1- 0.2
\end{array} \right]\cdot{\boldsymbol{\xi_2}} = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
\end{array} \right]\cdot{\boldsymbol{\xi_2} } = 0 \hspace{0.5cm}\rightarrow \hspace{0.5cm}
{\boldsymbol{\xi_2}} = {\rm const.} \cdot\left[ \begin{array}{c}
+
{\boldsymbol{\xi_2} } = {\rm const.} \cdot\left[ \begin{array}{c}
-1 \\
+
-1 \\
1
+
+1
 
\end{array} \right].$$
 
\end{array} \right].$$
Bringt man die Eigenvektoren in die so genannte Orthonormalfom (jeweils mit Betrag 1), so lauten sie:  
+
*Bringing the eigenvectors into the so-called orthonormal form&nbsp; $($each with magnitude&nbsp; $1)$, &nbsp; they are:  
:$${\boldsymbol{\xi_1}} = \frac{1}{\sqrt{2}} \cdot\left[ \begin{array}{c}
+
:$${\boldsymbol{\xi_1} } = \frac{1}{\sqrt{2} } \cdot\left[ \begin{array}{c}
1 \\
+
+1 \\
1
+
+1
\end{array} \right], \hspace{0.5cm}{\boldsymbol{\xi_2}} = \frac{1}{\sqrt{2}} \cdot\left[ \begin{array}{c}
+
\end{array} \right], \hspace{0.5cm}{\boldsymbol{\xi_2} } = \frac{1}{\sqrt{2} } \cdot\left[ \begin{array}{c}
-1 \\
+
-1 \\
1
+
+1
\end{array} \right].$$
+
\end{array} \right].$$}}
{{end}}
 
  
==Nutzung von Eigenwerten in der Informationstechnik==
+
==Use of eigenvalues in information technology==
Abschließend soll diskutiert werden, wie Eigenwert und Eigenvektor in der Informationstechnik genutzt werden können, beispielsweise zum Zwecke der Datenreduktion.  
+
<br>
 +
[[File:P_ID667__Sto_T_4_7_S4_ganz_neu.png |frame| For data compression using eigenvalue determination | right]]
 +
Finally,&nbsp; we will discuss how eigenvalue and eigenvector can be used in information technology, <br>for example for the purpose of data reduction.  
  
[[File:P_ID667__Sto_T_4_7_S4_ganz_neu.png |frame| Zur Datenkompression mittels Eigenwertbestimmung | rechts]]
+
We assume the same parameters as in&nbsp; $\text{Example 3}$&nbsp; and&nbsp; $\text{Example 4}$:  
Wir gehen von den Parameterwerten des soeben betrachteten Beispiels aus.
+
*With &nbsp; $σ_1 = σ_2 = 1$ &nbsp; and &nbsp; $ρ = 0.8$&nbsp; we get the two-dimensional PDF with elliptic contour lines sketched on the right.  
*Mit $σ_1 = σ_2 = 1$ und $ρ = 0.8$ ergibt sich die rechts skizzierte 2D-WDF mit elliptischen Höhenlinien.  
+
*The ellipse major axis here is at an angle of&nbsp; $45^\circ$&nbsp; because of&nbsp; $σ_1 = σ_2$.
*Die Ellipsenhauptachse liegt hier wegen $σ_1 = σ_2$ unter einem Winkel von $45^\circ$.  
+
  
In der Grafik ist zusätzlich das $(ξ_1, ξ_2)$-Koordinatensystem eingezeichnet, das durch die Eigenvektoren $\mathbf{ξ}_1$ und $\mathbf{ξ}_2$ der Korrelationsmatrix aufgespannt wird:  
+
The graph shows also the&nbsp; $(ξ_1,\ ξ_2)$&nbsp; coordinate system spanned by the eigenvectors &nbsp; $\mathbf{ξ}_1$ &nbsp; and &nbsp; $\mathbf{ξ}_2$ &nbsp; of the correlation matrix:  
*Die Eigenwerte $λ_1 = 1.8$ und $λ_2 = 0.2$ geben die Varianzen bezüglich des neuen Koordinatensystems an.  
+
*The eigenvalues&nbsp; $λ_1 = 1.8$&nbsp; and&nbsp; $λ_2 = 0.2$&nbsp; indicate the variances with respect to the new coordinate system.  
*Die Streuungen sind somit $σ_1 = \sqrt{1.8} ≈ 1.341$ und $σ_2 = \sqrt{0.2} ≈ 0.447$.  
+
*The variances are thus&nbsp; $σ_1 = \sqrt{1.8} ≈ 1.341$&nbsp; and&nbsp; $σ_2 = \sqrt{0.2} ≈ 0.447$.
 +
<br clear=all>
 +
{{GraueBox|TEXT= 
 +
$\text{Example 5:}$&nbsp; Let a two-dimensional random variable&nbsp; $\mathbf{x}$&nbsp;  to be quantized in its two dimensions&nbsp; $x_1$&nbsp; and&nbsp; $x_2$&nbsp; in the range between&nbsp; $-5σ$&nbsp; and&nbsp; $+5σ$&nbsp; in distance&nbsp; $Δx = 0. 01$,&nbsp; there are&nbsp; $\rm 10^6$&nbsp; possible quantization values&nbsp; $(σ_1 = σ_2 = σ = 1$&nbsp; provided$)$.
 +
*In contrast, the number of possible quantization values for the rotated random variable&nbsp; $\mathbf{ξ}$&nbsp; is smaller by a factor&nbsp; $1.341 \cdot 0.447 ≈ 0.6$.
 +
*This means: &nbsp; Just by rotating the coordinate system by&nbsp; $45^\circ$ &nbsp; ⇒ &nbsp; "transforming the two-dimensional random variable"&nbsp; the amount of data is reduced by&nbsp; $\approx40\%$.  
  
  
{{Beispiel}}''':'''&nbsp; Soll eine 2D-Zufallsgröße $\mathbf{x}$ in seinen beiden Dimensionen $x_1$ und $x_2$ im Bereich zwischen $–5σ$ und $+5σ$ im Abstand $Δx = 0.01$ quantisiert werden, so gibt es $\rm 10^6$ mögliche Quantisierungswerte $(σ_1 = σ_2 = σ = 1$  vorausgesetzt).
+
The alignment according to the main diagonals has already been treated for the two-dimensional case in the section&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Rotation_of_the_coordinate_system|"Rotation of the Coordinate System"]],&nbsp; based on geometric and trigonometric considerations.  
*Dagegen ist die Anzahl der möglichen Quantisierungswerte bei der gedrehten Zufallsgröße $\mathbf{ξ}$ um den Faktor $1.341 · 0.447 ≈ 0.6$ geringer.
 
*Das bedeutet: Allein durch die Drehung des Koordinatensystems um $45^\circ$  ⇒  ''Transformation der zweidimensionalen Zufallsgröße'' wurde eine Datenreduktion um $40\%$ erreicht.  
 
  
Die Ausrichtung entsprechend den Hauptdiagonalen wurde für den zweidimensionalen Fall bereits auf der Seite [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen#Drehung_des_Koordinatensystems_.281.29|Drehung des Koordinatensystems]] behandelt, und zwar basierend auf geometrischen und trigonometrischen Überlegungen.  
+
&rArr; &nbsp; '''The problem solution with eigenvalue and eigenvector is extremely elegant and can be easily extended to arbitrarily large dimensions&nbsp; $N$'''.}}
  
Die Problemlösung mit Eigenwert und Eigenvektor ist äußerst elegant und problemlos auf beliebig große Dimensionen $N$ erweiterbar.
+
==Basics of matrix operations: Determinant of a matrix==
{{end}}
+
<br>
 
+
We consider the two square matrices with dimension&nbsp; $N = 2$&nbsp; &nbsp;resp.&nbsp; $N = 3$:  
==Grundlagen der Matrizenrechnung: Determinante einer Matrix==
 
Wir betrachten die beiden quadratischen Matrizen mit Dimension $N = 2$ bzw. $N = 3$:  
 
 
:$${\mathbf{A}} = \left[ \begin{array}{cc}
 
:$${\mathbf{A}} = \left[ \begin{array}{cc}
 
a_{11} & a_{12} \\
 
a_{11} & a_{12} \\
 
a_{21} & a_{22}
 
a_{21} & a_{22}
 
\end{array} \right],
 
\end{array} \right],
\hspace{0.5cm}{\mathbf{B}} = \left[ \begin{array}{ccc}
+
\hspace{0.5cm}{\mathbf{B}} = \left[ \begin{array}{ccc}
 
b_{11} & b_{12} & b_{13}\\
 
b_{11} & b_{12} & b_{13}\\
 
b_{21} & b_{22} & b_{23}\\
 
b_{21} & b_{22} & b_{23}\\
Line 210: Line 237:
 
\end{array}\right].$$
 
\end{array}\right].$$
  
Die beiden Determinanten dieser Matrizen lauten:
+
The determinants of these two matrices are:
:$$|{\mathbf{A}}| = a_{11} a\cdot a_{22} - a_{12} \cdot a_{21},$$
+
:$$|{\mathbf{A}}| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21},$$
:$$|{\mathbf{B}}|   =   b_{11} \cdot b_{22} \cdot b_{33} + b_{12} \cdot
+
:$$|{\mathbf{B}}| = b_{11} \cdot b_{22} \cdot b_{33} + b_{12} \cdot
b_{23} \cdot b_{31} + b_{13} \cdot b_{21} \cdot b_{32}   -  
+
b_{23} \cdot b_{31} + b_{13} \cdot b_{21} \cdot b_{32} -  
 
  b_{11} \cdot b_{23} \cdot b_{32} -
 
  b_{11} \cdot b_{23} \cdot b_{32} -
 
  b_{12} \cdot b_{21} \cdot b_{33}-
 
  b_{12} \cdot b_{21} \cdot b_{33}-
 
  b_{13} \cdot b_{22} \cdot b_{31}.$$
 
  b_{13} \cdot b_{22} \cdot b_{31}.$$
  
Bitte beachten Sie:  
+
{{BlaueBox|TEXT=
*Die Determinante der Matrix $\mathbf{A}$ lässt sich geometrisch als die Fläche des durch die beiden Zeilenvektoren $(a_{11}, a_{12})$ und $(a_{21}, a_{22})$ aufgespannten Parallelogramms interpretieren.  
+
$\text{Please note:}$&nbsp;
*Die Fläche des durch die beiden Spaltenvektoren $(a_{11}, a_{21})^{\rm T}$ und $(a_{12}, a_{22})^{\rm T}$ festgelegten Parallelogramms ist ebenfalls $|\mathbf{A}|$.  
+
*The determinant of&nbsp; $\mathbf{A}$&nbsp; corresponds geometrically to the area of the parallelogram spanned by the row vectors&nbsp; $(a_{11}, a_{12})$&nbsp; and&nbsp; $(a_{21}, a_{22})$&nbsp; .  
*Dagegen ist die Determinante der Matrix $\mathbf{B}$ bei analoger geometrischer Interpretation als Volumen zu verstehen.  
+
*The area of the parallelogram defined by the two column vectors&nbsp; $(a_{11}, a_{21})^{\rm T}$&nbsp; and&nbsp; $(a_{12}, a_{22})^{\rm T}$&nbsp; is also&nbsp; $\vert \mathbf{A}\vert$.  
 
+
*On the other hand,&nbsp; the determinant of the matrix&nbsp; $\mathbf{B}$&nbsp; is to be understood as volume by analogous geometric interpretation.}}.  
 
 
Für $N > 2$ ist es möglich, sogenannte Unterdeterminanten zu bilden. Die Unterdeterminante einer $N×N$–Matrix bezüglich der Stelle $i, j$ ist die Determinante der $(N–1)×(N–1)$–Matrix, die sich ergibt, wenn man die $i$-te Zeile und die $j$-te Spalte streicht. Als Kofaktor bezeichnet man dann den Wert der Unterdeterminante gewichtet mit dem Vorzeichen $(–1)^{i+j}$.  
 
  
 +
For&nbsp; $N > 2$&nbsp; it is possible to form so-called&nbsp; "subdeterminants".
 +
*The subdeterminant of an&nbsp; $N×N$&nbsp; matrix with respect to the place &nbsp;$(i, j)$&nbsp; is the determinant of the&nbsp; $(N-1)×(N-1)$&nbsp; matrix <br>that results when the&nbsp; $i$-th row and the&nbsp; $j$-th column are deleted.
 +
*The co-factor is then the value of the subdeterminant weighted by the sign&nbsp; $(-1)^{i+j}$.
  
{{Beispiel}}''':'''&nbsp; Ausgehend von der $3×3$–Matrix $\mathbf{B}$ lauten die Kofaktoren der zweiten Zeile:
 
:$$B_{21}  =  -(b_{12} \cdot b_{23} - b_{13} \cdot
 
b_{32})\hspace{0.3cm}{\rm da}\hspace{0.3cm} i+j =3,$$
 
:$$B_{22}  =  +(b_{11} \cdot b_{23} - b_{13} \cdot
 
b_{31})\hspace{0.3cm}{\rm da}\hspace{0.3cm} i+j=4,$$
 
:$$B_{23}  =  -(b_{11} \cdot b_{32} - b_{12} \cdot
 
b_{31})\hspace{0.3cm}{\rm da}\hspace{0.3cm} i+j=5.$$
 
  
Die Determinante von $\mathbf{B}$ ergibt sich mit diesen Kofaktoren zu:  
+
{{GraueBox|TEXT= 
:$$|{\mathbf{B}}= b_{21} \cdot B_{21} +b_{22} \cdot B_{22}
+
$\text{Example 6:}$&nbsp; Starting from the&nbsp; $3×3$&nbsp; matrix&nbsp; $\mathbf{B}$&nbsp; the co-factors of the second row are:
 +
:$$B_{21} = -(b_{12} \cdot b_{23} - b_{13} \cdot
 +
b_{32})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j =3,$$
 +
:$$B_{22} = +(b_{11} \cdot b_{23} - b_{13} \cdot
 +
b_{31})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j=4,$$
 +
:$$B_{23} = -(b_{11} \cdot b_{32} - b_{12} \cdot
 +
b_{31})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j=5.$$
 +
*The determinant of&nbsp; $\mathbf{B}$&nbsp; is obtained with these co-factors to:
 +
:$$\vert {\mathbf{B} } \vert = b_{21} \cdot B_{21} +b_{22} \cdot B_{22}
 
+b_{23} \cdot B_{23}.$$
 
+b_{23} \cdot B_{23}.$$
Die Determinante wurde hier nach der zweiten Zeile entwickelt. Entwickelt man $\mathbf{B}$ nach einer anderen Zeile oder Spalte, so ergibt sich für $|\mathbf{B}|$ der gleiche Zahlenwert.
+
*The determinant was developed here after the second line.  
{{end}}
+
*Developing&nbsp; $\mathbf{B}$&nbsp; according to another row or column,&nbsp; we get for&nbsp; $\vert \mathbf{B} \vert$&nbsp; of course the same numerical value.}}
  
==Grundlagen der Matrizenrechnung: Inverse einer Matrix==
+
==Basics of matrix operations: Inverse of a matrix==
Häufig benötigt man die Inverse $\mathbf{M}^{–1}$ der quadratischen Matrix $\mathbf{M}$. Die inverse Matrix $\mathbf{M}^{–1}$ besitzt die gleiche Dimension $N$ wie $\mathbf{M}$ und ist wie folgt definiert, wobei $\mathbf{E}$ wieder die Einheitsmatrix (Diagonalmatrix) bezeichnet:  
+
<br>
 +
Often one needs the inverse&nbsp; $\mathbf{M}^{-1}$&nbsp; of the square matrix&nbsp; $\mathbf{M}$. &nbsp; The inverse matrix $\mathbf{M}^{-1}$&nbsp;
 +
*has the same dimension&nbsp; $N$&nbsp; as&nbsp; $\mathbf{M}$&nbsp; and
 +
*is defined as follows, where&nbsp; $\mathbf{E}$&nbsp; denotes again the&nbsp; "unit matrix"&nbsp; (diagonal matrix):  
 
:$${\mathbf{M}}^{-1} \cdot {\mathbf{M}} ={\mathbf{E}} =
 
:$${\mathbf{M}}^{-1} \cdot {\mathbf{M}} ={\mathbf{E}} =
 
\left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\
 
\left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\
+
0 & 1 & \cdots & 0 \ \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 \end{array} \right] .$$
+
0 & 0 & \cdots & 1 \end{array} \right] .$$
  
 
+
{{GraueBox|TEXT= 
Die Inverse der $2×2$–Matrix $\mathbf{A}$ lautet demnach:  
+
$\text{Example 7:}$&nbsp;
 +
Thus,&nbsp; the inverse of the&nbsp; $2×2$&nbsp; matrix $\mathbf{A}$&nbsp; is:  
 
:$$\left[ \begin{array}{cc}
 
:$$\left[ \begin{array}{cc}
 
a_{11} & a_{12} \\
 
a_{11} & a_{12} \\
 
a_{21} & a_{22}
 
a_{21} & a_{22}
\end{array} \right]^{-1} = \frac{1}{|{\mathbf{A}}|} \hspace{0.1cm}\cdot \left[ \begin{array}{cc}
+
\end{array} \right]^{-1} = \frac{1}{\vert{\mathbf{A} }\vert} \hspace{0.1cm}\cdot \left[ \begin{array}{cc}
 
a_{22} & -a_{12} \\
 
a_{22} & -a_{12} \\
 
-a_{21} & a_{11}
 
-a_{21} & a_{11}
 
\end{array} \right].$$
 
\end{array} \right].$$
  
 +
Here,&nbsp; $\vert\mathbf{A}\vert = a_{11} ⋅ a_{22} - a_{12} ⋅ a_{21}$&nbsp; is the&nbsp; [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|$\text{determinant}$]].&nbsp; }}
  
Hierbei gibt $|\mathbf{A}| = a_{11} · a_{22} – a_{12} · a_{21}$ die [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Determinante_einer_Matrix|Determinante]] an. Entsprechend gilt für $N = 3$:
+
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 8:}$&nbsp;
 +
Correspondingly,&nbsp; for the&nbsp; $3×3$&nbsp; matrix&nbsp; $\mathbf{B}$:
 
:$$\left[ \begin{array}{ccc}
 
:$$\left[ \begin{array}{ccc}
 
b_{11} & b_{12} & b_{13}\\
 
b_{11} & b_{12} & b_{13}\\
 
b_{21} & b_{22} & b_{23}\\
 
b_{21} & b_{22} & b_{23}\\
 
b_{31} & b_{32} & b_{33}
 
b_{31} & b_{32} & b_{33}
\end{array}\right]^{-1} = \frac{1}{|{\mathbf{B}}|} \hspace{0.1cm}\cdot\left[ \begin{array}{ccc}
+
\end{array}\right]^{-1} = \frac{1}{\vert{\mathbf{B} }\vert} \hspace{0.1cm}\cdot\left[ \begin{array}{ccc}
B_{11} & B_{21} & B_{31}\\
+
B_{11} & B_{21} & B_{31}\
 
B_{12} & B_{22} & B_{32}\\
 
B_{12} & B_{22} & B_{32}\\
 
B_{13} & B_{23} & B_{33}
 
B_{13} & B_{23} & B_{33}
 
\end{array}\right].$$
 
\end{array}\right].$$
  
 +
*The determinant &nbsp; $\vert\mathbf{B}\vert$ &nbsp; of a&nbsp; $3×3$&nbsp; matrix was given in the last section,&nbsp; as well as the calculation rule of the co-factors&nbsp; $B_{ij}$:
 +
*These describe the subdeterminants of&nbsp; $\mathbf{B}$,&nbsp; weighted by the position signs&nbsp; $(-1)^{i+j}$.
 +
*Note the swapping of rows and columns for the inverse.}}
  
Die Determinante $|\mathbf{B}|$ einer $3×3$–Matrix wurde auf der letzten Seite angegeben, ebenso wie die Berechnungsvorschrift  der Kofaktoren $B_{ij}$:
+
==Exercises for the chapter==
*Diese beschreiben die Unterdeterminanten von $\mathbf{B}$, gewichtet mit den Positionsvorzeichen $(–1)^{i+j}$.
+
<br>
*Zu beachten ist die Vertauschung der Zeilen und Spalten bei der Inversen.
+
[[Aufgaben:Exercise_4.15:_PDF_and_Correlation_Matrix|Exercise 4.15: PDF and Covariance Matrix]]
 
 
==Aufgaben zum Kapitel==
 
 
 
[[Aufgaben:4.15 WDF und Korrelationsmatrix|Aufgabe 4.15: &nbsp; WDF und Korrelationsmatrix]]
 
  
[[Aufgaben:4.15Z Aussagen der Kovarianzmatrix|Zusatzaufgabe 4.15Z: &nbsp; Aussagen der Kovarianzmatrix]]
+
[[Aufgaben:Exercise_4.15Z:_Statements_of_the_Covariance_Matrix|Exercise 4.15Z: Statements of the Covariance Matrix]]
  
[[Aufgaben:4.16 Eigenwerte und Eigenvektoren|Aufgabe 4.16: &nbsp; Eigenwerte und Eigenvektoren]]
+
[[Aufgaben:Exercise_4.16:_Eigenvalues_and_Eigenvectors|Exercise 4.16: Eigenvalues and Eigenvectors]]
  
[[Aufgaben:4.16Z 2D- und 3D-Datenreduktion|Zusatzaufgabe 4.16Z: &nbsp; 2D- und 3D-Datenreduktion]]
+
[[Aufgaben:Exercise_4.16Z:_Multidimensional_Data_Reduction|Exercise 4.16Z: Multidimensional Data Reduction]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 20:14, 21 December 2022

Correlation matrix


So far,  only statistical bindings between two  (scalar)  random variables have been considered. 

For the general case of a random variable with  $N$  dimensions,  a vector representation or matrix representation is convenient.  For the following description it is assumed:

  • The  $N$-dimensional random variable is represented as a vector:
$${\mathbf{x}} = \big[\hspace{0.03cm}x_1, \hspace{0.03cm}x_2, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \hspace{0.03cm}x_N \big]^{\rm T}.$$
Here  $\mathbf{x}$  is a column vector,  which can be seen from the addition  $\rm T$  - this stands for  "transposed"  - of the specified row vector.
  • Let  $N$  components  $x_i$  each be one-dimensional real Gaussian random variables.


$\text{Definition:}$  Statistical bindings between the  $N$  random variables are fully described by the  »correlation matrix«: 

$${\mathbf{R} } =\big[ R_{ij} \big] = \left[ \begin{array}{cccc}R_{11} & R_{12} & \cdots & R_{1N} \\ R_{21} & R_{22}& \cdots & R_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ R_{N1} & R_{N2} & \cdots & R_{NN} \end{array} \right] .$$
  • The  $N^2$  elements of this  $N×N$  matrix each indicate the first-order joint moment between two components:
$$R_{ij}= { {\rm E}\big[x_i \cdot x_j \big] } = R_{ji} .$$
  • Thus,  in vector notation,  the correlation matrix is:
$$\mathbf{R}= {\rm E\big[\mathbf{x} \cdot {\mathbf{x} }^{\rm T} \big] } .$$


Please note:

  • $\mathbf{x}$  is a column vector with  $N$  dimensions and the transposed vector  $\mathbf{x}^{\rm T}$  a row vector of equal length  ⇒   the product  $\mathbf{x} ⋅ \mathbf{x}^{\rm T}$  gives a  $N×N$–matrix.
  • In contrast  $\mathbf{x}^{\rm T}⋅ \mathbf{x}$  would be a  $1×1$–matrix,  i.e. a scalar.
  • For the special case of complex components  $x_i$  not considered further here,  the matrix elements are also complex:
$$R_{ij}= {{\rm E}\big[x_i \cdot x_j^{\star} \big]} = R_{ji}^{\star} .$$
  • The real parts of the correlation matrix  ${\mathbf{R} }$  are still symmetric about the main diagonal, while the imaginary parts differ by sign.


Covariance matrix


$\text{Definition:}$  One moves from the correlation matrix  $\mathbf{R} =\left[ R_{ij} \right]$  to the so-called  »covariance matrix«

$${\mathbf{K} } =\big[ K_{ij} \big] = \left[ \begin{array}{cccc}K_{11} & K_{12} & \cdots & K_{1N} \\ K_{21} & K_{22}& \cdots & K_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ K_{N1} & K_{N2} & \cdots & K_{NN} \end{array} \right] ,$$

if the matrix elements  $K_{ij} = {\rm E}\big[(x_i - m_i) - (x_j - m_j)\big]$  each specify a  $\text{first order central moment}$.

  • Thus,  with the vector  $\mathbf{m} = [m_1, m_2$, ... , $m_N]^{\rm T}$  can also be written:
$$\mathbf{K}= { {\rm E}\big[(\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\rm T} \big] } .$$
  • It should be explicitly noted that  $m_1$  denotes the mean value of the component  $x_1$  and  $m_2$  denotes the mean value  of $x_2$  - not the first or second order moment.


The covariance matrix  $\mathbf{K}$  shows the following further properties for real zero mean Gaussian variables:

  • The element of  $i$-th row and  $j$-th column is with the two standard deviations  $σ_i$  and  $σ_j$  and the  $\text{correlation coefficient}$  $ρ_{ij}$:
$$K_{ij} = σ_i ⋅ σ_j ⋅ ρ_{ij} = K_{ji}.$$
  • Adding the relation  $ρ_{ii} = 1$, we obtain for the covariance matrix:
$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} \sigma_{1}^2 & \sigma_{1}\cdot \sigma_{2}\cdot\rho_{12} & \cdots & \sigma_{1}\cdot \sigma_{N} \cdot \rho_{1N} \\ \sigma_{2} \cdot \sigma_{1} \cdot \rho_{21} & \sigma_{2}^2& \cdots & \sigma_{2} \cdot \sigma_{N} \cdot\rho_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{N} \cdot \sigma_{1} \cdot \rho_{N1} & \sigma_{N}\cdot \sigma_{2} \cdot\rho_{N2} & \cdots & \sigma_{N}^2 \end{array} \right] .$$
  • Because of the relation  $ρ_{ij} = ρ_{ji}$  the covariance matrix is always symmetric about the main diagonal for real quantities.  For complex quantities,  $ρ_{ij} = ρ_{ji}^{\star}$  would hold.


$\text{Example 1:}$  We consider the three covariance matrices:

$${\mathbf{K}_2} = \left[ \begin{array}{cc} 1 & -0.5 \\ -0.5 & 1 \end{array} \right], \hspace{0.9cm}{\mathbf{K}_3} = 4 \cdot \left[ \begin{array}{ccc} 1 & 1/2 & 1/4\\ 1/2 & 1 & 3/4 \\ 1/4 & 3/4 & 1 \end{array}\right], \hspace{0.9cm}{\mathbf{K}_4} = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 16 \end{array} \right].$$
  • $\mathbf{K}_2$  describes a two-dimensional random variable,  where the correlation coefficient  $ρ$  between the two components  is $-0.5$  and both components have the standard deviation  $σ = 1$.
  • For the three-dimensional random variable according to  $\mathbf{K}_3$  all components have the same standard deviation  $σ = 2$  (please note the prefactor).  The strongest bindings here are between  $x_2$  and  $x_3$,  where  $ρ_{23} = 3/4$  holds.
  • The four components of the random variable denoted by  $\mathbf{K}_4$  are uncorrelated,  with Gaussian PDF also statistically independent. 
    The variances are  $σ_i^2 = i^2$  for  $i = 1$, ... , $4$    ⇒   standard deviations  $σ_i = i$.

Relationship between covariance matrix and PDF


$\text{Definition:}$  The  »probability density function«  $\rm (PDF)$  of an  $N$-dimensional Gaussian random variable  $\mathbf{x}$  is:

$$f_\mathbf{x}(\mathbf{x})= \frac{1}{\sqrt{(2 \pi)^N \cdot \vert\mathbf{K}\vert } }\hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-1/2\hspace{0.05cm}\cdot \hspace{0.05cm}(\mathbf{x} - \mathbf{m})^{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}\mathbf{K}^{-1} \hspace{0.05cm}\cdot \hspace{0.05cm}(\mathbf{x} - \mathbf{m}) } .$$

Here denote:

  • $\mathbf{x}$   ⇒   the column vector of the considered  $N$–dimensional random variable,
  • $\mathbf{m}$   ⇒   the column vector of the associated mean values,
  • $\vert \mathbf{K}\vert$   ⇒   the determinant of the  $N×N$  covariance matrix  $\mathbf{K}$   ⇒   a scalar quantity,
  • $\mathbf{K}^{-1}$   ⇒   the inverse of  $\mathbf{K}$;  this is also an  $N×N$  matrix.


The multiplications of the row vector  $(\mathbf{x} - \mathbf{m})^{\rm T}$,  the inverse matrix  $\mathbf{K}^{-1}$  and the  column vector  $(\mathbf{x} - \mathbf{m})$  yields a scalar in the argument of the exponential function.

$\text{Example 2:}$   We consider as in  $\text{Example 1}$  again a four-dimensional random variable  $\mathbf{x}$  whose covariance matrix is occupied only on the main diagonal:

$${\mathbf{K} } = \left[ \begin{array}{cccc} \sigma_{1}^2 & 0 & 0 & 0 \\ 0 & \sigma_{2}^2 & 0 & 0 \\ 0 & 0 & \sigma_{3}^2 & 0 \\ 0 & 0 & 0 & \sigma_{4}^2 \end{array} \right].$$

Their determinant is  $\vert \mathbf{K}\vert = σ_1^2 \cdot σ_2^2 \cdot σ_3^2 \cdot σ_4^2$.  The inverse covariance matrix results to:

$${\mathbf{K} }^{-1} \cdot {\mathbf{K } } = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \hspace{0.5cm}\rightarrow \hspace{0.5cm} {\mathbf{K} }^{-1} = \left[ \begin{array}{cccc} \sigma_{1}^{-2} & 0 & 0 & 0 \\ 0 & \sigma_{2}^{-2} & 0 & 0 \\ 0 & 0 & \sigma_{3}^{-2} & 0 \\ 0 & 0 & 0 & \sigma_{4}^{-2} \end{array} \right].$$

Thus,  for zero mean quantities  $(\mathbf{m = 0})$  the probability density function  $\rm (PDF)$  is:

$$\mathbf{ f_{\rm x} }(\mathbf{x})= \frac{1}{ {(2 \pi)^2 \cdot \sigma_1\cdot \sigma_2\cdot \sigma_3\cdot \sigma_4} }\cdot {\rm e}^{-({x_1^2}/{2\sigma_1^2} \hspace{0.1cm}+\hspace{0.1cm}{x_2^2}/{2\sigma_2^2}\hspace{0.1cm}+\hspace{0.1cm}{x_3^2}/{2\sigma_3^2}\hspace{0.1cm}+\hspace{0.1cm}{x_4^2}/{2\sigma_4^2}) } .$$

A comparison with the chapter  "Probability density function and Cumulative distribution function"  shows that it is a four-dimensional random variable with statistically independent and uncorrelated components,  since the following condition is satisfied:

$$\mathbf{f_x}(\mathbf{x})= \mathbf{f_{x1 } }(\mathbf{x_1}) \cdot \mathbf{f_{x2} }(\mathbf{x_2}) \cdot \mathbf{f_{x3} }(\mathbf{x_3} ) \cdot \mathbf{f_{x4} }(\mathbf{x_4} ) .$$

The case of correlated components is discussed in detail in the  "exercises for the chapter".


The following links refer to two sections at the end of the chapter with basics of matrix operations:


Eigenvalues and eigenvectors


We further assume an  $N×N$  covariance matrix  $\mathbf{K}$ .

$\text{Definition:}$  From the  $N×N$  covariance matrix  $\mathbf{K}$  the  $N$  »eigenvalues«  $λ_1$, ... , $λ_N$  can be calculated as follows:

$$\big \vert {\mathbf{K} } - \lambda \cdot {\mathbf{E} }\big \vert = 0.$$

$\mathbf{E}$  is the unit diagonal matrix of dimension  $N$.


$\text{Example 3:}$  Given a  $2×2$  matrix  $\mathbf{K}$  with  $K_{11} = K_{22} = 1$   and   $K_{12} = K_{21} = 0.8$  we obtain as a determinant equation:

$${\rm det}\left[ \begin{array}{cc} 1- \lambda & 0.8 \\ 0.8 & 1- \lambda \end{array} \right] = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} (1- \lambda)^2 - 0.64 = 0.$$

Thus,  the two eigenvalues are  $λ_1 = 1.8$  and  $λ_2 = 0.2$.


$\text{Definition:}$  Using the eigenvalues thus obtained  $λ_i \ (i = 1$, ... , $N)$  one can compute the corresponding  »eigenvectors«  $\boldsymbol{\xi_i}$.  The  $N$  vectorial equations of determination are thereby:

$$\big ({\mathbf{K} } - \lambda_i \cdot {\mathbf{E} }\big ) \cdot {\boldsymbol{\xi_i} } = 0\hspace{0.5cm}(i= 1, \hspace{0.1cm}\text{...} \hspace{0.1cm} , N).$$


$\text{Example 4:}$  Continuing the calculation in  $\text{Example 3}$  yields the following two eigenvectors:

$$\left[ \begin{array}{cc} 1- 1.8 & 0.8 \\ 0.8 & 1- 1.8 \end{array} \right]\cdot{\boldsymbol{\xi_1} } = 0 \hspace{0.5cm}\rightarrow \hspace{0.5cm} {\boldsymbol{\xi_1} } = {\rm const.} \cdot\left[ \begin{array}{c} +1 \\ +1 \end{array} \right],$$
$$\left[ \begin{array}{cc} 1- 0.2 & 0.8 \\ 0.8 & 1- 0.2 \end{array} \right]\cdot{\boldsymbol{\xi_2} } = 0 \hspace{0.5cm}\rightarrow \hspace{0.5cm} {\boldsymbol{\xi_2} } = {\rm const.} \cdot\left[ \begin{array}{c} -1 \\ +1 \end{array} \right].$$
  • Bringing the eigenvectors into the so-called orthonormal form  $($each with magnitude  $1)$,   they are:
$${\boldsymbol{\xi_1} } = \frac{1}{\sqrt{2} } \cdot\left[ \begin{array}{c} +1 \\ +1 \end{array} \right], \hspace{0.5cm}{\boldsymbol{\xi_2} } = \frac{1}{\sqrt{2} } \cdot\left[ \begin{array}{c} -1 \\ +1 \end{array} \right].$$

Use of eigenvalues in information technology


For data compression using eigenvalue determination

Finally,  we will discuss how eigenvalue and eigenvector can be used in information technology,
for example for the purpose of data reduction.

We assume the same parameters as in  $\text{Example 3}$  and  $\text{Example 4}$:

  • With   $σ_1 = σ_2 = 1$   and   $ρ = 0.8$  we get the two-dimensional PDF with elliptic contour lines sketched on the right.
  • The ellipse major axis here is at an angle of  $45^\circ$  because of  $σ_1 = σ_2$.


The graph shows also the  $(ξ_1,\ ξ_2)$  coordinate system spanned by the eigenvectors   $\mathbf{ξ}_1$   and   $\mathbf{ξ}_2$   of the correlation matrix:

  • The eigenvalues  $λ_1 = 1.8$  and  $λ_2 = 0.2$  indicate the variances with respect to the new coordinate system.
  • The variances are thus  $σ_1 = \sqrt{1.8} ≈ 1.341$  and  $σ_2 = \sqrt{0.2} ≈ 0.447$.


$\text{Example 5:}$  Let a two-dimensional random variable  $\mathbf{x}$  to be quantized in its two dimensions  $x_1$  and  $x_2$  in the range between  $-5σ$  and  $+5σ$  in distance  $Δx = 0. 01$,  there are  $\rm 10^6$  possible quantization values  $(σ_1 = σ_2 = σ = 1$  provided$)$.

  • In contrast, the number of possible quantization values for the rotated random variable  $\mathbf{ξ}$  is smaller by a factor  $1.341 \cdot 0.447 ≈ 0.6$.
  • This means:   Just by rotating the coordinate system by  $45^\circ$   ⇒   "transforming the two-dimensional random variable"  the amount of data is reduced by  $\approx40\%$.


The alignment according to the main diagonals has already been treated for the two-dimensional case in the section  "Rotation of the Coordinate System",  based on geometric and trigonometric considerations.

⇒   The problem solution with eigenvalue and eigenvector is extremely elegant and can be easily extended to arbitrarily large dimensions  $N$.

Basics of matrix operations: Determinant of a matrix


We consider the two square matrices with dimension  $N = 2$   resp.  $N = 3$:

$${\mathbf{A}} = \left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right], \hspace{0.5cm}{\mathbf{B}} = \left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{array}\right].$$

The determinants of these two matrices are:

$$|{\mathbf{A}}| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21},$$
$$|{\mathbf{B}}| = b_{11} \cdot b_{22} \cdot b_{33} + b_{12} \cdot b_{23} \cdot b_{31} + b_{13} \cdot b_{21} \cdot b_{32} - b_{11} \cdot b_{23} \cdot b_{32} - b_{12} \cdot b_{21} \cdot b_{33}- b_{13} \cdot b_{22} \cdot b_{31}.$$

$\text{Please note:}$ 

  • The determinant of  $\mathbf{A}$  corresponds geometrically to the area of the parallelogram spanned by the row vectors  $(a_{11}, a_{12})$  and  $(a_{21}, a_{22})$  .
  • The area of the parallelogram defined by the two column vectors  $(a_{11}, a_{21})^{\rm T}$  and  $(a_{12}, a_{22})^{\rm T}$  is also  $\vert \mathbf{A}\vert$.
  • On the other hand,  the determinant of the matrix  $\mathbf{B}$  is to be understood as volume by analogous geometric interpretation.

.

For  $N > 2$  it is possible to form so-called  "subdeterminants".

  • The subdeterminant of an  $N×N$  matrix with respect to the place  $(i, j)$  is the determinant of the  $(N-1)×(N-1)$  matrix
    that results when the  $i$-th row and the  $j$-th column are deleted.
  • The co-factor is then the value of the subdeterminant weighted by the sign  $(-1)^{i+j}$.


$\text{Example 6:}$  Starting from the  $3×3$  matrix  $\mathbf{B}$  the co-factors of the second row are:

$$B_{21} = -(b_{12} \cdot b_{23} - b_{13} \cdot b_{32})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j =3,$$
$$B_{22} = +(b_{11} \cdot b_{23} - b_{13} \cdot b_{31})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j=4,$$
$$B_{23} = -(b_{11} \cdot b_{32} - b_{12} \cdot b_{31})\hspace{0.3cm}{\rm since}\hspace{0.3cm} i+j=5.$$
  • The determinant of  $\mathbf{B}$  is obtained with these co-factors to:
$$\vert {\mathbf{B} } \vert = b_{21} \cdot B_{21} +b_{22} \cdot B_{22} +b_{23} \cdot B_{23}.$$
  • The determinant was developed here after the second line.
  • Developing  $\mathbf{B}$  according to another row or column,  we get for  $\vert \mathbf{B} \vert$  of course the same numerical value.

Basics of matrix operations: Inverse of a matrix


Often one needs the inverse  $\mathbf{M}^{-1}$  of the square matrix  $\mathbf{M}$.   The inverse matrix $\mathbf{M}^{-1}$ 

  • has the same dimension  $N$  as  $\mathbf{M}$  and
  • is defined as follows, where  $\mathbf{E}$  denotes again the  "unit matrix"  (diagonal matrix):
$${\mathbf{M}}^{-1} \cdot {\mathbf{M}} ={\mathbf{E}} = \left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{array} \right] .$$

$\text{Example 7:}$  Thus,  the inverse of the  $2×2$  matrix $\mathbf{A}$  is:

$$\left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]^{-1} = \frac{1}{\vert{\mathbf{A} }\vert} \hspace{0.1cm}\cdot \left[ \begin{array}{cc} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{array} \right].$$

Here,  $\vert\mathbf{A}\vert = a_{11} ⋅ a_{22} - a_{12} ⋅ a_{21}$  is the  $\text{determinant}$


$\text{Example 8:}$  Correspondingly,  for the  $3×3$  matrix  $\mathbf{B}$:

$$\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{array}\right]^{-1} = \frac{1}{\vert{\mathbf{B} }\vert} \hspace{0.1cm}\cdot\left[ \begin{array}{ccc} B_{11} & B_{21} & B_{31}\ B_{12} & B_{22} & B_{32}\\ B_{13} & B_{23} & B_{33} \end{array}\right].$$
  • The determinant   $\vert\mathbf{B}\vert$   of a  $3×3$  matrix was given in the last section,  as well as the calculation rule of the co-factors  $B_{ij}$:
  • These describe the subdeterminants of  $\mathbf{B}$,  weighted by the position signs  $(-1)^{i+j}$.
  • Note the swapping of rows and columns for the inverse.

Exercises for the chapter


Exercise 4.15: PDF and Covariance Matrix

Exercise 4.15Z: Statements of the Covariance Matrix

Exercise 4.16: Eigenvalues and Eigenvectors

Exercise 4.16Z: Multidimensional Data Reduction