Difference between revisions of "Theory of Stochastic Signals/Moments of a Discrete Random Variable"

From LNTwww
 
Line 7: Line 7:
 
==Calculation as ensemble average or time average==
 
==Calculation as ensemble average or time average==
 
<br>
 
<br>
The probabilities and the relative frequencies provide extensive information about a discrete random variable.&nbsp;  
+
The probabilities and the relative frequencies provide extensive information about a discrete random variable.&nbsp; Reduced information is obtained by the so-called&nbsp; &raquo;'''moments'''&laquo; &nbsp; $m_k$,&nbsp; where&nbsp; $k$&nbsp; represents a natural number.  
 
 
Reduced information is obtained by the so-called &raquo;'''moments'''&laquo;&nbsp; $m_k$,&nbsp; where&nbsp; $k$&nbsp; represents a natural number.  
 
  
 
{{BlueBox|TEXT=   
 
{{BlueBox|TEXT=   
 
$\text{Two alternative ways of calculation:}$&nbsp;
 
$\text{Two alternative ways of calculation:}$&nbsp;
  
Under the  condition&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Ergodic_random_processes|$\text{ergodicity}$]]&nbsp; implicitly assumed here,&nbsp; there are two different calculation possibilities for the&nbsp; $k$-th order moment:  
+
Under the  condition&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Ergodic_random_processes|&raquo;$\text{ergodicity}$&laquo;]]&nbsp; implicitly assumed here,&nbsp; there are two different calculation possibilities for the&nbsp; $k$-th order moment:
*the&nbsp; &raquo;'''ensemble averaging'''&laquo;&nbsp; or&nbsp; "expected value formation" &nbsp; &rArr; &nbsp;averaging over all possible values&nbsp; $\{ z_\mu\}$&nbsp; with the index&nbsp; $\mu = 1 , \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , M$:  
+
 +
$\rm (A)$&nbsp; the&nbsp; &raquo;'''ensemble averaging'''&laquo;&nbsp; or&nbsp; &raquo;expected value formation&laquo; &nbsp; &rArr; &nbsp;averaging over all possible values&nbsp; $\{ z_\mu\}$&nbsp; with index&nbsp; $\mu = 1 , \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , M$:  
 
:$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm with \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm expected\hspace{0.1cm}value ;$$
 
:$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm with \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm expected\hspace{0.1cm}value ;$$
*the&nbsp; &raquo;'''time averaging'''&laquo;&nbsp; over the random sequence&nbsp; $\langle z_ν\rangle$&nbsp; with the index&nbsp; $ν = 1 , \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , N$:  
+
$\rm (B)$&nbsp; the&nbsp; &raquo;'''time averaging'''&laquo;&nbsp; over the random sequence&nbsp; $\langle z_ν\rangle$&nbsp; with index&nbsp; $ν = 1 , \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , N$:  
 
:$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm with\hspace{0.1cm}horizontal\hspace{0.1cm}line\hspace{-0.1cm}:\hspace{0.1cm}time\hspace{0.1cm}average.$$}}
 
:$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm with\hspace{0.1cm}horizontal\hspace{0.1cm}line\hspace{-0.1cm}:\hspace{0.1cm}time\hspace{0.1cm}average.$$}}
  
  
Note:
+
<u>Note:</u>
*Both types of calculations lead to the same asymptotic result for sufficiently large values of&nbsp; $N$.  
+
#Both types of calculations lead to the same asymptotic result for sufficiently large values of&nbsp; $N$.  
*For finite&nbsp; $N$,&nbsp; a comparable error results as when the probability is approximated by the relative frequency.  
+
#For finite&nbsp; $N$,&nbsp; a comparable error results as when the probability is approximated by the relative frequency.  
  
 
==First order moment &ndash; linear mean &ndash; DC component==
 
==First order moment &ndash; linear mean &ndash; DC component==
Line 30: Line 29:
 
$\text{Definition:}$&nbsp; With&nbsp; $k = 1$&nbsp; we obtain from the general equation the first order moment &nbsp; &rArr; &nbsp; the&nbsp; &raquo;'''linear mean'''&laquo;:  
 
$\text{Definition:}$&nbsp; With&nbsp; $k = 1$&nbsp; we obtain from the general equation the first order moment &nbsp; &rArr; &nbsp; the&nbsp; &raquo;'''linear mean'''&laquo;:  
 
:$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
 
:$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
*The left part of this equation describes the ensemble averaging&nbsp; (over all possible values),
+
*The left part of this equation describes the ensemble averaging&nbsp; $($over all possible values$)$.
:while the right equation gives the determination as time average.  
+
*In the context of signals,&nbsp; this quantity is also referred to as the&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|$\text{direct current}$]]&nbsp; $\rm (DC)$&nbsp; component.}}
+
* The right equation gives the determination as time average.
 +
 +
*In the context of signals,&nbsp; this quantity is also referred to as the&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;$\text{direct current}$&laquo;]]&nbsp; $\rm (DC)$&nbsp; component.}}
  
  
 +
{{GraueBox|TEXT=
 
[[File:P_ID49__Sto_T_2_2_S2_neu.png|right|frame|DC component&nbsp; $m_1$&nbsp; of a binary signal]]
 
[[File:P_ID49__Sto_T_2_2_S2_neu.png|right|frame|DC component&nbsp; $m_1$&nbsp; of a binary signal]]
{{GraueBox|TEXT=
 
 
$\text{Example 1:}$&nbsp; A binary signal&nbsp; $x(t)$&nbsp; with the two possible values  
 
$\text{Example 1:}$&nbsp; A binary signal&nbsp; $x(t)$&nbsp; with the two possible values  
*$1\hspace{0.03cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm L)$,  
+
*$1\hspace{0.03cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm L)$,  
*$3\hspace{0.03cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm H)$  
+
*$3\hspace{0.03cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm H)$  
  
  
as well as the occurrence probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; has the linear mean&nbsp; ("DC component")
+
as well as the occurrence probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; has the linear mean&nbsp; $($&raquo;DC component&laquo;$)$
 
:$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
 
:$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
 
This is drawn as a red line in the graph.
 
This is drawn as a red line in the graph.
Line 48: Line 49:
 
If we determine this parameter by time averaging over the displayed&nbsp; $N = 12$&nbsp; signal values,&nbsp; we obtain a slightly smaller value:  
 
If we determine this parameter by time averaging over the displayed&nbsp; $N = 12$&nbsp; signal values,&nbsp; we obtain a slightly smaller value:  
 
:$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
 
:$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
*Here,&nbsp; the probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; were replaced by the corresponding frequencies&nbsp; $h_{\rm L} = 4/12$&nbsp; and&nbsp; $h_{\rm H} = 8/12$&nbsp; respectively.  
+
#Here,&nbsp; the probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; were replaced by the corresponding frequencies&nbsp; $h_{\rm L} = 4/12$&nbsp; and&nbsp; $h_{\rm H} = 8/12$&nbsp; respectively.  
*In this example the relative error due to insufficient sequence length&nbsp; $N$&nbsp; is greater than&nbsp; $10\%$.  
+
#In this example the relative error due to insufficient sequence length&nbsp; $N$&nbsp; is greater than&nbsp; $10\%$.  
  
  
 
$\text{Note about our (admittedly somewhat unusual) nomenclature:}$
 
$\text{Note about our (admittedly somewhat unusual) nomenclature:}$
  
We denote binary symbols here as in circuit theory with&nbsp; $\rm L$&nbsp; ("Low")&nbsp; and&nbsp; $\rm H$&nbsp; ("High")&nbsp; to avoid confusion.  
+
We denote binary symbols here as in circuit theory with&nbsp; $\rm L$&nbsp; $($Low$)$&nbsp; and&nbsp; $\rm H$&nbsp; $($High$)$&nbsp; to avoid confusion.  
 
*In coding theory,&nbsp; it is useful to map&nbsp; $\{ \text{L,  H}\}$&nbsp; to&nbsp; $\{0, 1\}$&nbsp; to take advantage of the possibilities of modulo algebra.  
 
*In coding theory,&nbsp; it is useful to map&nbsp; $\{ \text{L,  H}\}$&nbsp; to&nbsp; $\{0, 1\}$&nbsp; to take advantage of the possibilities of modulo algebra.  
*In contrast,&nbsp; to describe modulation with bipolar&nbsp; (antipodal)&nbsp; signals,&nbsp; one better chooses the mapping&nbsp; $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.
+
 
 +
*In contrast,&nbsp; to describe modulation with bipolar&nbsp; $($antipodal$)$&nbsp; signals,&nbsp; one better chooses the mapping&nbsp; $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.
 
}}
 
}}
  
Line 65: Line 67:
 
$\text{Definitions:}$&nbsp;
 
$\text{Definitions:}$&nbsp;
  
*Analogous to the linear mean, &nbsp; $k = 2$&nbsp; obtains the&nbsp; &raquo;'''second order moment'''&laquo;:
+
$\rm (A)$&nbsp; Analogous to the linear mean, &nbsp; $k = 2$&nbsp; obtains the&nbsp; &raquo;'''second order moment'''&laquo;:
 
:$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
 
:$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
  
*Together with the DC component&nbsp; $m_1$&nbsp; the&nbsp; &raquo;'''variance'''&laquo;&nbsp; $σ^2$&nbsp; can be determined from this as a further parameter&nbsp; ("Steiner's theorem"):  
+
$\rm (B)$&nbsp; Together with the DC component&nbsp; $m_1$&nbsp; the&nbsp; &raquo;'''variance'''&laquo;&nbsp; $σ^2$&nbsp; can be determined from this as a further parameter&nbsp; $($&raquo;Steiner's theorem&laquo;$)$:  
 
:$$\sigma^2=m_2-m_1^2.$$
 
:$$\sigma^2=m_2-m_1^2.$$
*The&nbsp; &raquo;'''standard deviation'''&laquo;&nbsp; $σ$&nbsp; is the square root of the variance:
+
$\rm (C)$&nbsp; The&nbsp; &raquo;'''standard deviation'''&laquo;&nbsp; $σ$&nbsp; is the square root of the variance:
 
:$$\sigma=\sqrt{m_2-m_1^2}.$$}}
 
:$$\sigma=\sqrt{m_2-m_1^2}.$$}}
  
Line 76: Line 78:
 
$\text{Notes on units:}$
 
$\text{Notes on units:}$
  
#For a random signal&nbsp; $x(t)$ &nbsp; &rArr; &nbsp; $m_2$&nbsp; gives the total power&nbsp; (DC power plus AC power)&nbsp; related to the resistance&nbsp; $1 \hspace{0.03cm} Ω$.  
+
#For a random signal&nbsp; $x(t)$ &nbsp; &rArr; &nbsp; the second moment&nbsp; $m_2$&nbsp; gives the total power&nbsp; $($DC power plus AC power$)$&nbsp; related to the resistance&nbsp; $1 \hspace{0.03cm} Ω$.  
#If&nbsp; $x(t)$&nbsp; describes a voltage,&nbsp; accordingly&nbsp; $m_2$&nbsp; has the unit&nbsp; ${\rm V}^2$&nbsp; and the rms value&nbsp; (&nbsp; "root mean square")&nbsp; $x_{\rm eff}=\sqrt{m_2}$ &nbsp; has the unit&nbsp; ${\rm V}$.&nbsp; The total power for any reference resistance&nbsp; $R$&nbsp; is calculated to &nbsp; $P=m_2/R$&nbsp; and accordingly&nbsp; has the unit&nbsp; $\rm V^2/(V/A) = W$.
+
#If&nbsp; $x(t)$&nbsp; describes a voltage,&nbsp; accordingly&nbsp; $m_2$&nbsp; has the unit&nbsp; ${\rm V}^2$&nbsp; and the rms value&nbsp; $($&raquo;root mean square&laquo;$)$&nbsp; $x_{\rm eff}=\sqrt{m_2}$ &nbsp; has the unit&nbsp; ${\rm V}$.&nbsp;  
#If&nbsp; $x(t)$&nbsp; describes a current waveform,&nbsp; then&nbsp; $m_2$&nbsp; has the unit&nbsp; ${\rm A}^2$&nbsp; and the rms value&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; has the unit&nbsp; ${\rm A}$. &nbsp; The total power for any reference resistance&nbsp; $R$&nbsp; is calculated to &nbsp; $P=m_2\cdot R$&nbsp; and accordingly&nbsp; has the unit&nbsp; $\rm A^2 \cdot(V/A) = W$.
+
#The total power for any reference resistance&nbsp; $R$&nbsp; is calculated to &nbsp; $P=m_2/R$&nbsp; and accordingly&nbsp; has the unit&nbsp; $\rm V^2/(V/A) = W$.
 +
#If&nbsp; $x(t)$&nbsp; describes a current waveform,&nbsp; then&nbsp; $m_2$&nbsp; has the unit&nbsp; ${\rm A}^2$&nbsp; and the rms value&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; has the unit&nbsp; ${\rm A}$. &nbsp;  
 +
#The total power for any reference resistance&nbsp; $R$&nbsp; is calculated to &nbsp; $P=m_2\cdot R$&nbsp; and accordingly&nbsp; has the unit&nbsp; $\rm A^2 \cdot(V/A) = W$.
 
#Only in the special case&nbsp; $m_1=0$ &nbsp; &rArr; &nbsp; the variance is&nbsp; $σ^2=m_2$.&nbsp; Then the standard deviation &nbsp; $σ$&nbsp; coincides also with the rms value&nbsp; $x_{\rm eff}$&nbsp;.
 
#Only in the special case&nbsp; $m_1=0$ &nbsp; &rArr; &nbsp; the variance is&nbsp; $σ^2=m_2$.&nbsp; Then the standard deviation &nbsp; $σ$&nbsp; coincides also with the rms value&nbsp; $x_{\rm eff}$&nbsp;.
  
  
&rArr; &nbsp; The following&nbsp; (German language)&nbsp; learning video illustrates the defined quantities using the example of a digital signal: <br> &nbsp; &nbsp; [[Momentenberechnung bei diskreten Zufallsgrößen (Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] &nbsp; &rArr;  &nbsp; "Moment Calculation for Discrete Random Variables".
+
&rArr; &nbsp; The following&nbsp; $($German language$)$&nbsp; learning video illustrates the defined quantities using the example of a digital signal: <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; [[Momentenberechnung bei diskreten Zufallsgrößen (Lernvideo)|&raquo;Momentenberechnung bei diskreten Zufallsgrößen&raquo;]] &nbsp; &rArr;  &nbsp; &raquo;Moment Calculation for Discrete Random Variables&raquo;.
  
 +
{{GraueBox|TEXT=
 
[[File:P_ID456__Sto_T_2_2_S3_neu.png | right|frame|"Standard deviation"&nbsp; of a binary signal]]
 
[[File:P_ID456__Sto_T_2_2_S3_neu.png | right|frame|"Standard deviation"&nbsp; of a binary signal]]
{{GraueBox|TEXT= 
+
 
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
For a binary signal&nbsp; $x(t)$&nbsp; with the amplitude values.
+
For a binary signal&nbsp; $x(t)$&nbsp; with the amplitude values  
*$1\hspace{0.03cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm L)$,  
+
*$1\hspace{0.03cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm L)$,  
*$3\hspace{0.03cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm H)$  
+
*$3\hspace{0.03cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm H)$  
  
  
Line 95: Line 100:
 
:$$m_2 = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$
 
:$$m_2 = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$
  
The rms value&nbsp; $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$&nbsp; is independent of the reference resistance&nbsp; $R$&nbsp; unlike the total power. For the latter, with&nbsp; $R=1 \hspace{0.1cm} Ω$&nbsp; the value&nbsp; $P=7.4 \hspace{0.1cm}{\rm W}$,&nbsp; with&nbsp; $R=50 \hspace{0.1cm} Ω$&nbsp; on the other hand, only&nbsp; $P=0.148 \hspace{0.1cm}{\rm W}$.  
+
#The rms value&nbsp; $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$&nbsp; is independent of the reference resistance&nbsp; $R$&nbsp; unlike the total power.  
   
+
#For the latter, with&nbsp; $R=1 \hspace{0.1cm} Ω$&nbsp; the value&nbsp; $P=m_2/R=7.4 \hspace{0.1cm}{\rm W}$,&nbsp; with&nbsp; $R=50 \hspace{0.1cm} Ω$&nbsp; on the other hand, only&nbsp; $P=0.148 \hspace{0.1cm}{\rm W}$.  
 +
 +
 
 
With the DC component&nbsp; $m_1 = 2.6 \hspace{0.05cm}\rm V$&nbsp; $($see&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|$\text{Example 1})$]]&nbsp; it follows for  
 
With the DC component&nbsp; $m_1 = 2.6 \hspace{0.05cm}\rm V$&nbsp; $($see&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|$\text{Example 1})$]]&nbsp; it follows for  
 
*the variance&nbsp; $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
 
*the variance&nbsp; $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
 +
 
*the standard deviation&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$.  
 
*the standard deviation&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$.  
  
  
The same variance&nbsp; $ σ^2 = 0.64\hspace{0.05cm} {\rm V}^2$ and the same standard deviation&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$&nbsp; result for the amplitudes&nbsp; $0\hspace{0.05cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm L)$&nbsp; and $2\hspace{0.05cm}\rm V$&nbsp; $($for the symbol&nbsp; $\rm H)$,&nbsp; provided the occurrence probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; remain the same.&nbsp; Only the DC component and the total power change:  
+
The same variance&nbsp; $ σ^2 = 0.64\hspace{0.05cm} {\rm V}^2$ and the same standard deviation&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$&nbsp; result for the amplitudes&nbsp; $0\hspace{0.05cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm L)$&nbsp; and $2\hspace{0.05cm}\rm V$&nbsp; $($for symbol&nbsp; $\rm H)$,&nbsp; provided the occurrence probabilities&nbsp; $p_{\rm L} = 0.2$&nbsp; and&nbsp; $p_{\rm H} = 0.8$&nbsp; remain the same.&nbsp; Only the DC component and the total power change:  
 
:$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
 
:$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
 
:$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$}}
 
:$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$}}

Latest revision as of 19:40, 6 February 2024

Calculation as ensemble average or time average


The probabilities and the relative frequencies provide extensive information about a discrete random variable.  Reduced information is obtained by the so-called  »moments«   $m_k$,  where  $k$  represents a natural number.

$\text{Two alternative ways of calculation:}$ 

Under the condition  »$\text{ergodicity}$«  implicitly assumed here,  there are two different calculation possibilities for the  $k$-th order moment:

$\rm (A)$  the  »ensemble averaging«  or  »expected value formation«   ⇒  averaging over all possible values  $\{ z_\mu\}$  with index  $\mu = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , M$:

$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm with \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm expected\hspace{0.1cm}value ;$$

$\rm (B)$  the  »time averaging«  over the random sequence  $\langle z_ν\rangle$  with index  $ν = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , N$:

$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm with\hspace{0.1cm}horizontal\hspace{0.1cm}line\hspace{-0.1cm}:\hspace{0.1cm}time\hspace{0.1cm}average.$$


Note:

  1. Both types of calculations lead to the same asymptotic result for sufficiently large values of  $N$.
  2. For finite  $N$,  a comparable error results as when the probability is approximated by the relative frequency.

First order moment – linear mean – DC component


$\text{Definition:}$  With  $k = 1$  we obtain from the general equation the first order moment   ⇒   the  »linear mean«:

$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
  • The left part of this equation describes the ensemble averaging  $($over all possible values$)$.
  • The right equation gives the determination as time average.


DC component  $m_1$  of a binary signal

$\text{Example 1:}$  A binary signal  $x(t)$  with the two possible values

  • $1\hspace{0.03cm}\rm V$  $($for symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($for symbol  $\rm H)$


as well as the occurrence probabilities  $p_{\rm L} = 0.2$  and  $p_{\rm H} = 0.8$  has the linear mean  $($»DC component«$)$

$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$

This is drawn as a red line in the graph.

If we determine this parameter by time averaging over the displayed  $N = 12$  signal values,  we obtain a slightly smaller value:

$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
  1. Here,  the probabilities  $p_{\rm L} = 0.2$  and  $p_{\rm H} = 0.8$  were replaced by the corresponding frequencies  $h_{\rm L} = 4/12$  and  $h_{\rm H} = 8/12$  respectively.
  2. In this example the relative error due to insufficient sequence length  $N$  is greater than  $10\%$.


$\text{Note about our (admittedly somewhat unusual) nomenclature:}$

We denote binary symbols here as in circuit theory with  $\rm L$  $($Low$)$  and  $\rm H$  $($High$)$  to avoid confusion.

  • In coding theory,  it is useful to map  $\{ \text{L, H}\}$  to  $\{0, 1\}$  to take advantage of the possibilities of modulo algebra.
  • In contrast,  to describe modulation with bipolar  $($antipodal$)$  signals,  one better chooses the mapping  $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.


Second order moment – power – variance – standard deviation


$\text{Definitions:}$ 

$\rm (A)$  Analogous to the linear mean,   $k = 2$  obtains the  »second order moment«:

$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$

$\rm (B)$  Together with the DC component  $m_1$  the  »variance«  $σ^2$  can be determined from this as a further parameter  $($»Steiner's theorem«$)$:

$$\sigma^2=m_2-m_1^2.$$

$\rm (C)$  The  »standard deviation«  $σ$  is the square root of the variance:

$$\sigma=\sqrt{m_2-m_1^2}.$$


$\text{Notes on units:}$

  1. For a random signal  $x(t)$   ⇒   the second moment  $m_2$  gives the total power  $($DC power plus AC power$)$  related to the resistance  $1 \hspace{0.03cm} Ω$.
  2. If  $x(t)$  describes a voltage,  accordingly  $m_2$  has the unit  ${\rm V}^2$  and the rms value  $($»root mean square«$)$  $x_{\rm eff}=\sqrt{m_2}$   has the unit  ${\rm V}$. 
  3. The total power for any reference resistance  $R$  is calculated to   $P=m_2/R$  and accordingly  has the unit  $\rm V^2/(V/A) = W$.
  4. If  $x(t)$  describes a current waveform,  then  $m_2$  has the unit  ${\rm A}^2$  and the rms value  $x_{\rm eff}=\sqrt{m_2}$  has the unit  ${\rm A}$.  
  5. The total power for any reference resistance  $R$  is calculated to   $P=m_2\cdot R$  and accordingly  has the unit  $\rm A^2 \cdot(V/A) = W$.
  6. Only in the special case  $m_1=0$   ⇒   the variance is  $σ^2=m_2$.  Then the standard deviation   $σ$  coincides also with the rms value  $x_{\rm eff}$ .


⇒   The following  $($German language$)$  learning video illustrates the defined quantities using the example of a digital signal:
            »Momentenberechnung bei diskreten Zufallsgrößen»   ⇒   »Moment Calculation for Discrete Random Variables».

"Standard deviation"  of a binary signal

$\text{Example 2:}$  For a binary signal  $x(t)$  with the amplitude values

  • $1\hspace{0.03cm}\rm V$  $($for symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($for symbol  $\rm H)$


and the probabilities of occurrence  $p_{\rm L} = 0.2$  resp.  $p_{\rm H} = 0.8$  results for the second moment:

$$m_2 = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$
  1. The rms value  $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$  is independent of the reference resistance  $R$  unlike the total power.
  2. For the latter, with  $R=1 \hspace{0.1cm} Ω$  the value  $P=m_2/R=7.4 \hspace{0.1cm}{\rm W}$,  with  $R=50 \hspace{0.1cm} Ω$  on the other hand, only  $P=0.148 \hspace{0.1cm}{\rm W}$.


With the DC component  $m_1 = 2.6 \hspace{0.05cm}\rm V$  $($see  $\text{Example 1})$  it follows for

  • the variance  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
  • the standard deviation  $σ = 0.8 \hspace{0.05cm} \rm V$.


The same variance  $ σ^2 = 0.64\hspace{0.05cm} {\rm V}^2$ and the same standard deviation  $σ = 0.8 \hspace{0.05cm} \rm V$  result for the amplitudes  $0\hspace{0.05cm}\rm V$  $($for symbol  $\rm L)$  and $2\hspace{0.05cm}\rm V$  $($for symbol  $\rm H)$,  provided the occurrence probabilities  $p_{\rm L} = 0.2$  and  $p_{\rm H} = 0.8$  remain the same.  Only the DC component and the total power change:

$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$


Exercises for the chapter


Exercise 2.2: Multi-Level Signals

Exercise 2.2Z: Discrete Random Variables