Difference between revisions of "Theory of Stochastic Signals/Power-Spectral Density"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Zufallsgrößen mit statistischen Bindungen |Vorherige Seite=Autokorrelationsfunktion (AKF) |Nächste Seite=Kreuzkorrelationsfunktion un…“)
 
Line 25: Line 25:
 
$$ \varphi_x(\tau)=\int^{+\infty}_{-\infty} \Phi_x(f)  \cdot {\rm e}^{{\rm j\pi} f \tau} {\rm d} f.$$
 
$$ \varphi_x(\tau)=\int^{+\infty}_{-\infty} \Phi_x(f)  \cdot {\rm e}^{{\rm j\pi} f \tau} {\rm d} f.$$
 
Die beiden Gleichungen sind nur dann direkt anwendbar, wenn der Zufallsprozess weder einen Gleichanteil noch periodische Anteile beinhaltet. Andernfalls muss man nach den Angaben auf Seite 4 dieses Abschnitts vorgehen: Spektrale Leistungsdichte mit Gleichsignalkomponente.  
 
Die beiden Gleichungen sind nur dann direkt anwendbar, wenn der Zufallsprozess weder einen Gleichanteil noch periodische Anteile beinhaltet. Andernfalls muss man nach den Angaben auf Seite 4 dieses Abschnitts vorgehen: Spektrale Leistungsdichte mit Gleichsignalkomponente.  
 +
 +
==Physikalische Interpretation und Messung==
 +
Das folgende Bild zeigt eine Anordnung zur (näherungsweisen) messtechnischen Bestimmung des Leistungsdichtespektrums $Φ_x(f)$.
 +
 +
 +
[[File: P_ID387__Sto_T_4_5_S2_neu.png | Zur Messung des Leistungsdichtespektrums]]
 +
 +
 +
Hierzu ist folgendes anzumerken:
 +
*Das Zufallssignal $x(t)$ wird auf ein (möglichst) rechteckförmiges und (möglichst) schmalbandiges Filter mit Mittenfrequenz $f$ und Bandbreite $Δf$ gegeben, wobei $Δf$ entsprechend der gewünschten Frequenzauflösung hinreichend klein gewählt werden muss.
 +
*Das entsprechende Ausgangssignal $x_f(t)$ wird quadriert und anschließend der Mittelwert über eine hinreichend lange Messdauer $T_{\rm M}$ gebildet. Damit erhält man die Leistung von $x_f(t)$ bzw. die Leistungsanteile von $x(t)$ im Spektralbereich von $f – Δf/2$ bis $f + Δf/2$:
 +
$$P_{xf} =\overline{x_f(t)^2}=\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f(t)^2 \hspace{0.1cm}\rm d \it t.$$
 +
*Die Division durch $Δf$ führt von der spektralen Leistung zur spektralen Leistungsdichte:
 +
$${\Phi_{x \rm +}}(f)  =\frac{P_{xf}}{{\rm \Delta} f} \hspace {0.5cm} {\rm bzw.}  \hspace {0.5cm} \Phi_{x}(f) = \frac{P_{xf}}{{\rm 2 \cdot \Delta} f}.$$
 +
:Hierbei bezeichnet $Φ_{x+}(f) = 2 · Φ_x(f)$ das einseitige, nur für positive Frequenzen definierte LDS. Für negative Frequenzen ist $Φ_{x+}(f) =$ 0. Im Gegensatz dazu gilt für das üblicherweise verwendete zweiseitige LDS: $Φ_x(–f) = Φ_x(f)$.
 +
*Während die Leistung $P_{xf}$ mit kleiner werdender Bandbreite $Δf$ gegen Null tendiert, bleibt die spektrale Leistungsdichte ab einem hinreichend kleinen Wert von $Δf$ nahezu konstant.
 +
*Für die exakte Bestimmung von $Φ_x(f)$ sind zwei Grenzübergänge notwendig:
 +
$${\Phi_x(f)} = \lim_{{\rm \Delta}f\to 0} \hspace{0.2cm} \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{{\rm 2 \cdot \Delta}f\cdot T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm} \rm d \it t.$$
 +
 +
 +
Aus dieser physikalischen Interpretation folgt weiter, dass das LDS stets reell ist und nie negativ werden kann. Die gesamte Signalleistung von $x(t)$ erhält man dann durch Integration über alle Spektralanteile:
 +
$$P_x = \int^{\infty}_{0}\Phi_{x \rm +}(f) \hspace{0.1cm}{\rm d} f = \int^{+\infty}_{-\infty}\Phi_x(f)\hspace{0.1cm} {\rm d} f .$$
 +
 +
  
  

Revision as of 21:49, 2 June 2016

Theorem von Wiener-Chintchine

Im Weiteren beschränken wir uns auf ergodische Prozesse. Wie im Kapitel 4.4 gezeigt wurde, gelten dann die folgenden Aussagen:

  • Jede einzelne Musterfunktion $x_i(t)$ ist repräsentativ für den gesamten Zufallsprozess { $x_i(t)$}. Alle Zeitmittelwerte sind somit identisch mit den dazugehörigen Scharmittelwerten.
  • Die Autokorrelationsfunktion, die allgemein von den beiden Zeitparametern $t_1$ und $t_2$ beeinflusst wird, hängt nur noch von der Zeitdifferenz $τ = t_2 – t_1$ ab:

$$\varphi_x(t_1,t_2)={\rm E}[x(t_{\rm 1})\cdot x(t_{\rm 2})] = \varphi_x(\tau)= \int^{+\infty}_{-\infty}x(t)\cdot x(t+\tau)\,{\rm d}t.$$


Diese Funktion liefert quantitative Aussagen über die (linearen) statistischen Bindungen innerhalb des ergodischen Prozesses { $x_i(t)$} im Zeitbereich. Die äquivalente Beschreibungsgröße im Frequenzbereich ist die spektrale Leistungsdichte, häufig auch als Leistungsdichtespektrum (LDS) bezeichnet.


Das Leistungsdichtespektrum (LDS) eines ergodischen Zufallsprozesses { $x_i(t)$} ist die Fouriertransformierte der Autokorrelationsfunktion (AKF): $${\Phi}_x(f)=\int^{+\infty}_{-\infty}\varphi_x(\tau) \cdot {\rm e}^{- {\rm j\pi} f \tau} {\rm d} \tau. $$ Diesen Funktionalzusammenhang nennt man das Theorem von Wiener und Chintchine.


Ebenso kann die AKF als Fourierrücktransformierte des LDS berechnet werden (siehe Kapitel 3.1 des Buches „Signaldarstellung”): $$ \varphi_x(\tau)=\int^{+\infty}_{-\infty} \Phi_x(f) \cdot {\rm e}^{{\rm j\pi} f \tau} {\rm d} f.$$ Die beiden Gleichungen sind nur dann direkt anwendbar, wenn der Zufallsprozess weder einen Gleichanteil noch periodische Anteile beinhaltet. Andernfalls muss man nach den Angaben auf Seite 4 dieses Abschnitts vorgehen: Spektrale Leistungsdichte mit Gleichsignalkomponente.

Physikalische Interpretation und Messung

Das folgende Bild zeigt eine Anordnung zur (näherungsweisen) messtechnischen Bestimmung des Leistungsdichtespektrums $Φ_x(f)$.


Zur Messung des Leistungsdichtespektrums


Hierzu ist folgendes anzumerken:

  • Das Zufallssignal $x(t)$ wird auf ein (möglichst) rechteckförmiges und (möglichst) schmalbandiges Filter mit Mittenfrequenz $f$ und Bandbreite $Δf$ gegeben, wobei $Δf$ entsprechend der gewünschten Frequenzauflösung hinreichend klein gewählt werden muss.
  • Das entsprechende Ausgangssignal $x_f(t)$ wird quadriert und anschließend der Mittelwert über eine hinreichend lange Messdauer $T_{\rm M}$ gebildet. Damit erhält man die Leistung von $x_f(t)$ bzw. die Leistungsanteile von $x(t)$ im Spektralbereich von $f – Δf/2$ bis $f + Δf/2$:

$$P_{xf} =\overline{x_f(t)^2}=\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f(t)^2 \hspace{0.1cm}\rm d \it t.$$

  • Die Division durch $Δf$ führt von der spektralen Leistung zur spektralen Leistungsdichte:

$${\Phi_{x \rm +}}(f) =\frac{P_{xf}}{{\rm \Delta} f} \hspace {0.5cm} {\rm bzw.} \hspace {0.5cm} \Phi_{x}(f) = \frac{P_{xf}}{{\rm 2 \cdot \Delta} f}.$$

Hierbei bezeichnet $Φ_{x+}(f) = 2 · Φ_x(f)$ das einseitige, nur für positive Frequenzen definierte LDS. Für negative Frequenzen ist $Φ_{x+}(f) =$ 0. Im Gegensatz dazu gilt für das üblicherweise verwendete zweiseitige LDS: $Φ_x(–f) = Φ_x(f)$.
  • Während die Leistung $P_{xf}$ mit kleiner werdender Bandbreite $Δf$ gegen Null tendiert, bleibt die spektrale Leistungsdichte ab einem hinreichend kleinen Wert von $Δf$ nahezu konstant.
  • Für die exakte Bestimmung von $Φ_x(f)$ sind zwei Grenzübergänge notwendig:

$${\Phi_x(f)} = \lim_{{\rm \Delta}f\to 0} \hspace{0.2cm} \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{{\rm 2 \cdot \Delta}f\cdot T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm} \rm d \it t.$$


Aus dieser physikalischen Interpretation folgt weiter, dass das LDS stets reell ist und nie negativ werden kann. Die gesamte Signalleistung von $x(t)$ erhält man dann durch Integration über alle Spektralanteile: $$P_x = \int^{\infty}_{0}\Phi_{x \rm +}(f) \hspace{0.1cm}{\rm d} f = \int^{+\infty}_{-\infty}\Phi_x(f)\hspace{0.1cm} {\rm d} f .$$