Difference between revisions of "Theory of Stochastic Signals/Set Theory Basics"

From LNTwww
Line 206: Line 206:
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Zwei Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; nennt man&nbsp; '''disjunkt'''&nbsp; (englisch:&nbsp; ''disjoint'')&nbsp; oder&nbsp; '''miteinander unvereinbar''',  
+
$\text{Definition:}$&nbsp; Two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are called&nbsp; '''disjoint''' oder&nbsp; '''incompatible''' (miteinander unvereinbar?),  
*wenn es kein einziges Element gibt,  
+
*if there is no single element,  
*das sowohl in&nbsp; $A$&nbsp; als auch in&nbsp; $B$&nbsp; enthalten ist.}}
+
*that is contained in both&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp;.}}
  
  
 
[[File:EN_Sto_T_1_2_S7.png |frame| Disjunkte Mengen im Venndiagramm | rechts]]
 
[[File:EN_Sto_T_1_2_S7.png |frame| Disjunkte Mengen im Venndiagramm | rechts]]
Das Schaubild zeigt zwei disjunkte Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; im Venndiagramm.  
+
The diagram shows two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; in the Venn diagram.
  
In diesem Sonderfall gelten die folgenden Aussagen:  
+
In this special case, the following statements hold:
*Die Schnittmenge zweier disjunkter Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; ergibt stets die leere Menge:
+
 +
*The intersection of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; always yields the empty set:
 
:$${\rm Pr}(A \cap B) =  {\rm Pr}(\phi) = \rm 0.$$
 
:$${\rm Pr}(A \cap B) =  {\rm Pr}(\phi) = \rm 0.$$
*Die Wahrscheinlichkeit der Vereinigungsmenge zweier disjunkter Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; ist immer gleich der Summe der beiden Einzelwahrscheinlichkeiten:
+
*The probability of the union set of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; is always equal to the sum of the two individual probabilities:
 
:$${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B).$$
 
:$${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B).$$
 
<br clear=all>
 
<br clear=all>
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 6:}$&nbsp; Bei unserem Standardexperiment sind die beiden Mengen  
+
$\text{Example 6:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
* $A :=$  „die Augenzahl ist kleiner als&nbsp; $3$”$ = \{1, 2\}$  &nbsp; ⇒  &nbsp; ${\rm Pr}( A) = 2/6$, und
+
Bei unserem Standardexperiment sind die beiden Mengen  
* $B :=$  „die Augenzahl ist größer als&nbsp; $3$” $ = \{4, 5,6\}$  &nbsp; ⇒  &nbsp;  ${\rm Pr}( B) = 3/6$
+
* $A :=$  „the outcome is smaller than&nbsp; $3$”$ = \{1, 2\}$  &nbsp; ⇒  &nbsp; ${\rm Pr}( A) = 2/6$, and
 +
* $B :=$  „the outcome is greater than&nbsp; $3$” $ = \{4, 5,6\}$  &nbsp; ⇒  &nbsp;  ${\rm Pr}( B) = 3/6$
  
  
zueinander disjunkt, da&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; kein einziges gemeinsames Element beinhalten.  
+
disjoint to each other, since&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; do not contain a single common element.  
*Die Schnittmenge ergibt die leere Menge:&nbsp; ${A \cap B} = \phi$.
+
*The intersection yields the empty set:&nbsp; ${A \cap B} = \phi$.
*Die Wahrscheinlichkeit der Vereinigungsmenge&nbsp; ${A \cup B}  = \{1, 2, 4, 5, 6\}$&nbsp; ist gleich&nbsp; ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$}}
+
*The probability of the union set&nbsp; ${A \cup B}  = \{1, 2, 4, 5, 6\}$&nbsp; is equal to&nbsp; ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$}}
  
==Additionstheorem==
+
==Addition rule==
 
<br>
 
<br>
Nur bei disjunkten Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; gilt für die Wahrscheinlichkeit der Vereinigungsmenge der Zusammenhang&nbsp; ${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B)$.&nbsp; Wie errechnet sich diese Wahrscheinlichkeit aber bei allgemeinen, nicht notwendigerweise disjunkten Ereignissen?  
+
Only for disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; the relation&nbsp; ${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B)$ holds for the probability of the union set.&nbsp; But how is this probability calculated for general events that are not necessarily disjoint?  
  
[[File:EN_Sto_T_1_2_S8.png | right|frame| Zum Additionstheorem der Wahrscheinlichkeitsrechnung]]
+
[[File:EN_Sto_T_1_2_S8.png | right|frame| About the addition theorem of the probability calculus]]
Betrachten Sie das rechte  Venndiagramm mit der violett dargestellten Schnittmenge&nbsp; $A ∩ B$.  
+
Consider the right-hand Venn diagram with the intersection&nbsp; $A ∩ B$ shown in purple.  
*Die rote Menge beinhaltet alle Elemente, die zu&nbsp; $A$&nbsp; gehören, aber nicht zu&nbsp; $B$.  
+
*The red set contains all the elements that belong to&nbsp; $A$&nbsp; but not to&nbsp; $B$.  
*Die Elemente von&nbsp; $B$, die nicht gleichzeitig in&nbsp; $A$&nbsp; enthalten sind, sind blau dargestellt.  
+
*The elements of&nbsp; $B$, that are not simultaneously contained in&nbsp; $A$&nbsp; are shown in blue.  
*Alle roten, blauen und violetten Flächen zusammen ergeben die Vereinigungsmenge&nbsp; $A ∪ B$.
+
*All red, blue, and purple surfaces together make up the union set&nbsp; $A ∪ B$.
  
  
Aus dieser mengentheoretischen Darstellung erkennt man folgende Zusammenhänge:
+
From this set-theoretic representation, one can see the following relationships:
 
:$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B)  + {\rm Pr}(A \cap \overline{B}),$$
 
:$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B)  + {\rm Pr}(A \cap \overline{B}),$$
 
:$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
 
:$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
 
:$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) \rm + {\rm Pr}(\overline{A} \cap {B}).$$
 
:$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) \rm + {\rm Pr}(\overline{A} \cap {B}).$$
  
Addiert man die ersten beiden Gleichungen und subtrahiert davon die dritte, so erhält man:
+
Adding the first two equations and subtracting from them the third, we get:
 
:$${\rm Pr}(A) \rm +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$
 
:$${\rm Pr}(A) \rm +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Durch Umstellen dieser Gleichung kommt man zum sogenannten&nbsp; '''Additionstheorem'''&nbsp; (englisch:&nbsp; ''Addition Rule'')&nbsp; für zwei beliebige, nicht notwendigerweise disjunkte Ereignisse:
+
$\text{Definition:}$&nbsp; By rearranging this equation, one arrives at the so-called&nbsp; ''Addition Rule''&nbsp; for any two, not necessarily disjoint events:
 
:$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$}}
 
:$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 7:}$&nbsp; Wir betrachten die beiden Mengen  
+
$\text{Example 7:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
* $A :=$ „die Augenzahl ist ungeradzahlig” $= \{1, 3, 5\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A) = 3/6$, und  
+
Wir betrachten die beiden Mengen  
* $B :=$  „die Augenzahl ist größer als&nbsp; $2$”$ = \{3, 4, 5, 6\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(B) = 4/6$.  
+
* $A :=$ „the outcome is uneven” $= \{1, 3, 5\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A) = 3/6$, und  
 +
* $B :=$  „the outcome is greater than&nbsp; $2$”$ = \{3, 4, 5, 6\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(B) = 4/6$.  
  
  
Damit ergeben sich für die Wahrscheinlichkeiten
+
This gives the following probabilities
*der Vereinigungsmenge &nbsp; ⇒ &nbsp;  ${\rm Pr}(A ∪ B) = 5/6$, und
+
*of the union &nbsp; ⇒ &nbsp;  ${\rm Pr}(A ∪ B) = 5/6$, and
*der Schnittmenge &nbsp; ⇒ &nbsp;  ${\rm Pr}(A  ∩ B) = 2/6$.  
+
*of the intersection &nbsp; ⇒ &nbsp;  ${\rm Pr}(A  ∩ B) = 2/6$.  
  
  
Die Zahlenwerte zeigen die Gültigkeit des Additionstheorems: &nbsp; $5/6 = 3/6 + 4/6 − 2/6$.}}
+
The numerical values show the validity of the addition theorem: &nbsp; $5/6 = 3/6 + 4/6 − 2/6$.}}
  
==Vollständiges System==
+
==Complete system==
 
<br>
 
<br>
Im letzten Abschnitt zu diesem Kapitel  betrachten wir wieder mehr als zwei mögliche Ereignisse, nämlich allgemein&nbsp; $I$.&nbsp; Diese Ereignisse werden im Folgenden mit&nbsp; $A_i$&nbsp; bezeichnet, und es gilt für den Laufindex: &nbsp; $1 ≤ i ≤ I$.
+
In the last section to this chapter, we again consider more than two possible events, namely, in general,&nbsp; $I$.&nbsp; These events will be denoted by&nbsp; $A_i$&nbsp; in what follows, and the running index is: &nbsp; $1 ≤ i ≤ I$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Eine Konstellation mit den Ereignissen&nbsp; $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i,  \hspace{0.1cm}\text{...}\hspace{0.1cm}  , A_I$&nbsp; bezeichnet man dann und nur dann als ein&nbsp; '''vollständiges System''', wenn die beiden folgenden Bedingungen erfüllt sind:
+
$\text{Definition:}$&nbsp; A constellation with events&nbsp; $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i,  \hspace{0.1cm}\text{...}\hspace{0.1cm}  , A_I$&nbsp; is called a&nbsp; '''complete system''', if and only if the following two conditions are satisfied:
 
   
 
   
'''(1)''' &nbsp; Alle Ereignisse sind paarweise disjunkt:
+
'''(1)''' &nbsp; All events are pairwise disjoint:
 
:$$A_i \cap A_j = \it \phi \hspace{0.15cm}\rm f\ddot{u}r\hspace{0.15cm}alle\hspace{0.15cm}\it i \ne j.$$
 
:$$A_i \cap A_j = \it \phi \hspace{0.15cm}\rm f\ddot{u}r\hspace{0.15cm}alle\hspace{0.15cm}\it i \ne j.$$
'''(2)''' &nbsp; Die Vereinigung aller Ereignismengen ergibt die Grundmenge:
+
'''(2)''' &nbsp; The union of all event sets gives the basic set:
 
:$$\bigcup_{i=1}^{I} A_i = G.$$}}
 
:$$\bigcup_{i=1}^{I} A_i = G.$$}}
  
  
Aufgrund dieser beiden Voraussetzungen gilt dann für die Summe aller Wahrscheinlichkeiten:
+
Given these two assumptions, the sum of all probabilities is then:
 
:$$\sum_{i =1}^{  I} {\rm Pr}(A_i) = 1.$$
 
:$$\sum_{i =1}^{  I} {\rm Pr}(A_i) = 1.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 8:}$&nbsp; Die Ereignismengen&nbsp; $A_1 := \{1, 5\}$&nbsp; und&nbsp; $A_2 := \{2, 3\}$&nbsp; ergeben beim Zufallsexperiment "Werfen eines Würfels" zusammen mit der Menge&nbsp; $A_3 := \{4, 6\}$&nbsp; ein vollständiges System, nicht jedoch beim Experiment "Werfen einer Roulettekugel".}}
+
$\text{Example 8:}$&nbsp; The event sets&nbsp; $A_1 := \{1, 5\}$&nbsp; and&nbsp; $A_2 := \{2, 3\}$&nbsp; together with the set&nbsp; $A_3 := \{4, 6\}$&nbsp; result in a complete system in the random experiment "throwing a die", but not in the experiment "throwing a roulette ball".}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 9:}$&nbsp; Ein weiteres Beispiel für ein vollständiges System ist die diskrete Zufallsgröße&nbsp; $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; mit den Auftrittswahrscheinlichkeiten entsprechend der folgenden&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsfunktion]]:
+
$\text{Example 9:}$&nbsp; Another example of a complete system is the discrete random variable&nbsp; $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; with the likelihood corresponding to the following&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|probability function]]:
 
:$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1), P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm}, P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
 
:$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1), P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm}, P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
 
:$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm},  
 
:$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm},  
 
\hspace{0.2cm}p_2 =  {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
 
\hspace{0.2cm}p_2 =  {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
  
Die möglichen Ergebnisse&nbsp; $x_i$&nbsp; der Zufallsgröße&nbsp; $X$&nbsp; sind paarweise zueinander disjunkt und die Summe aller Auftrittswahrscheinlichkeiten&nbsp;  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$&nbsp;  liefert grundsätzlich das Ergebnis&nbsp; $1$.}}
+
The possible outcomes&nbsp; $x_i$&nbsp; of the random variable&nbsp; $X$&nbsp; are pairwise disjoint to each other and the sum of all likelihoods&nbsp;  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$&nbsp;  always yields the result&nbsp; $1$.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 10:}$&nbsp; Es gelte&nbsp; $X= \{0, 1, 2 \}$&nbsp; und&nbsp; $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Dann gilt:
+
$\text{Example 10:}$&nbsp; Let&nbsp; $X= \{0, 1, 2 \}$&nbsp; and&nbsp; $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:
 
:$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$
 
:$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$
  
Bei der Zufallsgröße&nbsp; $X = \{1, \pi, {\rm e} \}$&nbsp; und gleichem&nbsp; $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$&nbsp; lauten die Zuordnungen:
+
With random variable&nbsp; $X = \{1, \pi, {\rm e} \}$&nbsp; and equal&nbsp; $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$&nbsp; the assignments are:
 
:$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$
 
:$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$
  
  
''Hinweise:''
+
Hints:
*Die&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsfunktion]]&nbsp; $P_X(X)$&nbsp; macht nur Aussagen über die Wahrscheinlichkeiten, nicht über den Wertevorrat&nbsp;  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; der Zufallsgröße&nbsp; $X$.  
+
*The&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|probability function]]&nbsp; $P_X(X)$&nbsp; only makes statements about the probabilities, not about the set of values&nbsp;  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; of the random variable&nbsp; $X$.  
*Diese zusätzliche Information liefert die&nbsp; [[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion_(WDF)#Definition_der_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]&nbsp; (WDF).}}
+
*This additional information is provided by the&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF)#Definition_der_Wahrscheinlichkeitsdichtefunktion|probability density function]]&nbsp; (PDF).}}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:1.2 Schaltlogik (D/B-Wandler)|Aufgabe 1.2: Schaltlogik (D/B-Wandler)]]
 
[[Aufgaben:1.2 Schaltlogik (D/B-Wandler)|Aufgabe 1.2: Schaltlogik (D/B-Wandler)]]

Revision as of 00:14, 15 November 2021

Venn diagram, universal and empty set


Set representation in the Venn diagram

In later chapters,  we will sometimes refer to  set theory .  Therefore,  the most important basics and definitions of this discipline will be briefly summarized here.  The topic is also covered in the  (German language)  learning video 
"Mengentheoretische Begriffe und Gesetzmäßigkeiten"   ⇒   "Set Theory – Terms and Regularities"

An important tool of set theory is the  Venn diagramm  according to the graph:

  • Applied to probability theory,  here the events  $A_i$  are represented as areas.  For a simpler description we do not denote the events here with  $A_1$,  $A_2$  and  $A_3$,  but with  $A$,  $B$  and  $C$ in contrast to the last chapter. 
  • The total area corresponds to the  "universal set"  (or short:  "universe")  $G$.  The universe  $G$  contains all possible outcomes and stands for the  certain event,  which by definition occurs with probability „one”:   ${\rm Pr}(G) = 1$.  For example,  in the random experiment  "Throwing a die",  the probability for the event  "The number of eyes is less than or equal to 6"  is identical to one.
  • In contrast,  the  empty set  $ϕ$  does not contain a single element.  In terms of events,  the empty set specifies the  impossible event  with probability  ${\rm Pr}(ϕ) = 0$  an.  For example,  in the experiment  "Throwing a die",  the probability for the event  "The number of eyes is greater than 6" is identically zero.


Note that not every event  $A$  with  ${\rm Pr}(A) = 0$  can really never happen.  For example:

  • The event  "The noise value  $n$  is identically zero"  is vanishingly small and  ${\rm Pr}(n \equiv 0) = 0$,  if  $n$  is described by a continuous  (Gaussian)  random variable.
  • Nevertheless,  it is of course possible  (although extremely unlikely)  that at some point the exact noise value  $n = 0$  will also occur.

Union set


Some set-theoretical relationss are explained now on the basis of the Venn diagram.

$\text{Definition:}$  The  union set  $C$  of two sets  $A$  and  $B$  contains all the elements that are contained either in set  $A$  or in set  $B$  or in both. 

  • This relationship is expressed as the following formula:

$$\ C = A \cup B \hspace{0.2cm}(= A + B).$$

  • In the literature,  especially in the Galois field  $\rm GF(2)$  the term  "sumset"  is common,  and the plus sign is sometimes used.


Union set in the Venn diagram

Using the diagram, it is easy to see the following laws of set theory:

$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cup A = A \hspace{3.6cm}(\rm tautology),$$
$$A\cup B = B\cup A \hspace{2.75cm}(\rm commutative \hspace{0.15cm}property),$$
$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$

If nothing else is known about the event sets  $A$  and  $B$  then only a lower bound and an upper bound can be given for the probability of the union set:

$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B).$$
  • The probability of the union set is equal to the lower bound if  $A$  is a  subset  of  $B$  or vice versa.
  • The upper bound holds for  disjoint sets.


$\text{Example 1:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  "The outcome is greater than or equal to  $5$"$ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$,
  • $B :=$  "The outcome is even" $= \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$,


then the union set contains four elements:   $(A \cup B) = \{2, 4, 5, 6 \}$   ⇒   ${\rm Pr} (A \cup B) = 4/6 = 2/3$.

  • For the lower bound:   ${\rm Pr} (A \cup B) \ge {\rm Max}\big({\rm Pr} (A),\ {\rm Pr} (B)\big ) = 3/6.$
  • For the upper bound:   $ {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B) = 5/6.$

Intersection set


Another important set-theoretic linkage is the intersection.

$\text{Definition:}$  The  intersection set  $C$  of two sets  $A$  and  $B$  contains all those elements which are contained in both the set  $A$  and the set  $B$.

  • This relationship is expressed as the following formula:
$$C = A \cap B \hspace{0.2cm}(= A \cdot B).$$
  • In the literature,  especially in the Galois field  $\rm GF(2)$  the term  "Cartesian product"  is also common,  and the multiplication sign is sometimes used.


Intersection set in the Venn diagram

In the diagram,  the intersection is shown in purple.  Analog to the union set,  the following regularities are to be mentioned here:

$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cap A = A \rm \hspace{3.6cm}(tautology),$$
$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$


  • If nothing else is known about  $A$  and  $B$ , then no statement can be made for the probability of the intersection.
  • However, if  ${\rm Pr} (A) \le 1/2$  and at the same time  ${\rm Pr} (B) \le 1/2$ hold, then a lower bound and an upper bound can be given:
$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\ {\rm Pr} (B)\big ).$$
  • ${\rm Pr}(A ∩ B)$  is sometimes called the "joint probability" and is denoted by  ${\rm Pr}(A, \ B)$ .
  • ${\rm Pr}(A ∩ B)$  is equal to the upper bound if  $A$  is a  subset  of  $B$  or vice versa.
  • The lower bound is obtained for the joint probability of  disjoint sets.


$\text{Example 2:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. Consider the two events

  • $A :=$ „the outcome is greater than or equal to  $5$”$ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$, und
  • $B :=$ „the outcome is even”$ = \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$,


The intersection contains only one element:   $(A ∩ B) = \{ 6 \}$   ⇒   ${\rm Pr} (A ∩ B) = 1/6$.

  • The upper bound is obtained as  ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
  • The lower bound of the intersection here is zero because of  ${\rm Pr} (A) \le 1/2$  and  ${\rm Pr} (B) \le 1/2$ .

Complementary set


$\text{Definition:}$  The  complementary set of  $A$  is often denoted by a straight line above the letter  $(\overline{A})$ .  It contains all the elements that are not contained in the set  $A$  and it holds for their probability:

$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$


Complementary set in the Venn diagram

In the Venn diagram shown, the set complementary to  $A$  is shaded.  From this diagram, some set-theoretic relationships can be seen:

  • The complementary set of the complementary set of  $A$  is the set  $A$  itself:
$$\overline{\overline{A}} = A.$$
  • The union of a set  $A$  with its complementary set gives the universal set:
$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
  • The intersection of $A$ with its complementary set gives the empty set:
$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$

$\text{Example 3:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. Starting from the set

  • $A :=$ „the outcome is smaller than  $5$” $= \{1, 2, 3, 4\}$   ⇒   ${\rm Pr} (A)= 2/3$


the corresponding complementary set is

  • $\overline{A} :=$ „the outcome is greater than or equal to  $5$”$ = \{5, 6\}$   ⇒   ${\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$

Strict subset – improper subset


Subsets in the Venn diagram

$\text{Definitions:}$  One calls  $A$  a  strict subset  of  $B$ and writes for this  $A ⊂ B$,

  • if all elements of  $A$  are also contained in  $B$ ,
  • but not all elements of  $B$  are also contained in  $A$.


In this case, the probabilities are:

$${\rm Pr}(A) < {\rm Pr}(B).$$

This set-theoretic relation is illustrated by the sketched Venn diagram.

On the other hand,  $A$  is called a  subset  of  $B$  and uses the notation

$$A \subseteq B = (A \subset B) \cup (A = B),$$

wenn  $A$  entweder eine echte Teilmenge von  $B$  ist oder wenn  $A$  und  $B$  gleiche Mengen sind.

  • The relation  ${\rm Pr} (A) \le {\rm Pr} (B)$ then applies to the probabilities.
  • The equality sign is only valid for the special case  $A = B$.


In addition, however, the two equations known as the  laws of absorption  also apply:

$$(A \cap B) \cup A = A ,$$
$$(A \cup B) \cap A = A,$$

since the intersection  $A ∩ B$  is always a subset of  $A$ , but at the same time  $A$  is also a subset of the union  $A ∪ B$ .

$\text{Example 4:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. Consider the two events

  • $A :=$ „the outcome is uneven”$ = \{1, 3, 5\}$   ⇒   ${\rm Pr} (A)= 3/6$, und
  • $B :=$ „the outcome is a prime number” $= \{1, 2, 3, 5\}$   ⇒   ${\rm Pr} (B)= 4/6$.


It can be seen that  $A$  is a (strict) subset of the set  $B$ .  Accordingly,   ${\rm Pr} (A) < {\rm Pr} (B)$ is also true.

Theorems of de Morgan


rechts

In many set theory tasks,   de Morgan's  two theorems are extremely useful. These are:

$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

These regularities are illustrated in the diagram:

  • Set  $A$  is shown in red and set  $B$  is shown in blue.
  • The complimentary set  $\overline {A}$  of  $A$  is shaded in the horizontal direction.
  • The complimentary set  $\overline {B}$  of  $B$  is hatched in the vertical direction.
  • The complement  $\overline{A \cup B}$  of the union  ${A \cup B}$  is hatched both horizontally and vertically.
  • It is thus equal to the intersection  $\overline{A} \cap \overline{B}$  of the two complement sets of  $A$  and  $B$:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

The second form of the de Morgan theorem can also be illustrated graphically with this Venn diagram:

  • The intersection  $A ∩ B$  (shown in purple in the figure) is neither horizontally nor vertically shaded.
  • Accordingly, the complement  $\overline{A ∩ B}$  of the intersection is hatched either horizontally, vertically, or in both directions.
  • By de Morgan's second theorem, the complement of the intersection equals the union of the two complementary sets of  $A$  and  $B$:
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

$\text{Example 5:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. We consider the two sets

  • $A : =$ „the outcome is uneven” $= \{1, 3, 5\}$,
  • $B : =$ „the outcome is greater than  $2$” $= \{3, 4, 5, 6\}$.


From this follow the two complementary sets

  • $\overline {A} : =$ „the outcome” $= \{2, 4, 6\}$,
  • $\overline {B} : =$ „the outcome is smaller than  $3$” $= \{1, 2\}$.


Further, using the above theorems, we obtain the following subsets:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\}\hspace{0.5 cm}\rm und \hspace{0.5cm} \overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$

Disjoint sets


$\text{Definition:}$  Two sets  $A$  and  $B$  are called  disjoint oder  incompatible (miteinander unvereinbar?),

  • if there is no single element,
  • that is contained in both  $A$  and  $B$ .


rechts

The diagram shows two disjoint sets  $A$  and  $B$  in the Venn diagram.

In this special case, the following statements hold:

  • The intersection of two disjoint sets  $A$  and  $B$  always yields the empty set:
$${\rm Pr}(A \cap B) = {\rm Pr}(\phi) = \rm 0.$$
  • The probability of the union set of two disjoint sets  $A$  and  $B$  is always equal to the sum of the two individual probabilities:
$${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B).$$


$\text{Example 6:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. Bei unserem Standardexperiment sind die beiden Mengen

  • $A :=$ „the outcome is smaller than  $3$”$ = \{1, 2\}$   ⇒   ${\rm Pr}( A) = 2/6$, and
  • $B :=$ „the outcome is greater than  $3$” $ = \{4, 5,6\}$   ⇒   ${\rm Pr}( B) = 3/6$


disjoint to each other, since  $A$  and  $B$  do not contain a single common element.

  • The intersection yields the empty set:  ${A \cap B} = \phi$.
  • The probability of the union set  ${A \cup B} = \{1, 2, 4, 5, 6\}$  is equal to  ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$

Addition rule


Only for disjoint sets  $A$  and  $B$  the relation  ${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B)$ holds for the probability of the union set.  But how is this probability calculated for general events that are not necessarily disjoint?

About the addition theorem of the probability calculus

Consider the right-hand Venn diagram with the intersection  $A ∩ B$ shown in purple.

  • The red set contains all the elements that belong to  $A$  but not to  $B$.
  • The elements of  $B$, that are not simultaneously contained in  $A$  are shown in blue.
  • All red, blue, and purple surfaces together make up the union set  $A ∪ B$.


From this set-theoretic representation, one can see the following relationships:

$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B) + {\rm Pr}(A \cap \overline{B}),$$
$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) \rm + {\rm Pr}(\overline{A} \cap {B}).$$

Adding the first two equations and subtracting from them the third, we get:

$${\rm Pr}(A) \rm +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$

$\text{Definition:}$  By rearranging this equation, one arrives at the so-called  Addition Rule  for any two, not necessarily disjoint events:

$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$


$\text{Example 7:}$  We consider again the experiment  "throwing a die".  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$. Wir betrachten die beiden Mengen

  • $A :=$ „the outcome is uneven” $= \{1, 3, 5\}$   ⇒   ${\rm Pr}(A) = 3/6$, und
  • $B :=$ „the outcome is greater than  $2$”$ = \{3, 4, 5, 6\}$   ⇒   ${\rm Pr}(B) = 4/6$.


This gives the following probabilities

  • of the union   ⇒   ${\rm Pr}(A ∪ B) = 5/6$, and
  • of the intersection   ⇒   ${\rm Pr}(A ∩ B) = 2/6$.


The numerical values show the validity of the addition theorem:   $5/6 = 3/6 + 4/6 − 2/6$.

Complete system


In the last section to this chapter, we again consider more than two possible events, namely, in general,  $I$.  These events will be denoted by  $A_i$  in what follows, and the running index is:   $1 ≤ i ≤ I$.

$\text{Definition:}$  A constellation with events  $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_I$  is called a  complete system, if and only if the following two conditions are satisfied:

(1)   All events are pairwise disjoint:

$$A_i \cap A_j = \it \phi \hspace{0.15cm}\rm f\ddot{u}r\hspace{0.15cm}alle\hspace{0.15cm}\it i \ne j.$$

(2)   The union of all event sets gives the basic set:

$$\bigcup_{i=1}^{I} A_i = G.$$


Given these two assumptions, the sum of all probabilities is then:

$$\sum_{i =1}^{ I} {\rm Pr}(A_i) = 1.$$

$\text{Example 8:}$  The event sets  $A_1 := \{1, 5\}$  and  $A_2 := \{2, 3\}$  together with the set  $A_3 := \{4, 6\}$  result in a complete system in the random experiment "throwing a die", but not in the experiment "throwing a roulette ball".


$\text{Example 9:}$  Another example of a complete system is the discrete random variable  $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  with the likelihood corresponding to the following  probability function:

$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1), P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm}, P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm}, \hspace{0.2cm}p_2 = {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$

The possible outcomes  $x_i$  of the random variable  $X$  are pairwise disjoint to each other and the sum of all likelihoods  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$  always yields the result  $1$.


$\text{Example 10:}$  Let  $X= \{0, 1, 2 \}$  and  $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:

$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$

With random variable  $X = \{1, \pi, {\rm e} \}$  and equal  $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$  the assignments are:

$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$


Hints:

  • The  probability function  $P_X(X)$  only makes statements about the probabilities, not about the set of values  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  of the random variable  $X$.
  • This additional information is provided by the  probability density function  (PDF).

Exercises for the chapter


Aufgabe 1.2: Schaltlogik (D/B-Wandler)

Aufgabe 1.2Z: Ziffernmengen

Aufgabe 1.3: Fiktive Uni Irgenwo

Aufgabe 1.3Z: Gewinnen mit Roulette?