Difference between revisions of "Theory of Stochastic Signals/Wiener–Kolmogorow Filter"

From LNTwww
 
(25 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{LastPage}}
 
{{LastPage}}
 
{{Header
 
{{Header
|Untermenü=Filterung stochastischer Signale
+
|Untermenü=Filtering of Stochastic Signals
|Vorherige Seite=Matched-Filter
+
|Vorherige Seite=Matched Filter
 
|Nächste Seite=
 
|Nächste Seite=
 
}}
 
}}
==Optimierungskriterium des Wiener–Kolmogorow–Filters==
+
==Optimization criterion of the Wiener-Kolmogorow filter==
Als weiteres Beispiel zur Optimalfilterung betrachten wir nun die Aufgabenstellung, die Form eines Nutzsignals $s(t)$ aus dem durch additives Rauschen $n(t)$ gestörten Empfangssignals $r(t)$ im Sinne des ''mittleren quadratischen Fehlers'' (MQF) möglichst gut zu rekonstruieren:  
+
<br>
$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t} \mathop  = \limits^! {\rm{Minimum}}.$$
+
As another example of optimal filtering, we now consider the task of reconstructing as well as possible the shape of an useful signal&nbsp; $s(t)$&nbsp; from the received signal&nbsp; $r(t)$,&nbsp; which is disturbed by additive noise&nbsp; $n(t)$,&nbsp; in terms of the&nbsp; "mean square error"&nbsp; (MSE):  
 +
:$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t} \mathop  = \limits^! {\rm{Minimum}}.$$
  
Das entsprechende Filter ist nach seinen Erfindern [https://de.wikipedia.org/wiki/Norbert_Wiener Norbert Wiener] und [https://de.wikipedia.org/wiki/Andrei_Nikolajewitsch_Kolmogorow Andrei Nikolajewitsch Kolmogorow] benannt. Den entsprechenden Frequenzgang bezeichnen wir mit $H_{\rm WF}(f).$  
+
The filter is named after its inventors&nbsp; [https://en.wikipedia.org/wiki/Norbert_Wiener $\text{Norbert Wiener}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Andrey_Kolmogorov $\text{Andrei Nikolajewitsch Kolmogorow}$].&nbsp; We denote the corresponding frequency response by&nbsp; $H_{\rm WF}(f).$  
  
 +
[[File:EN_Sto_T_5_5_S1.png|right |frame| Derivation of the Wiener filter]]
 +
The following conditions apply to this optimization task:
 +
*The signal&nbsp; $s(t)$&nbsp; to be reconstructed is the result of a random process&nbsp; $\{s(t)\}$, of which only the statistical properties are known in the form of the power-spectral density&nbsp; ${\it Φ}_s(f)$.&nbsp;
 +
*The noise signal&nbsp; $n(t)$&nbsp; is given by the PSD&nbsp; ${\it Φ}_n(f)$.&nbsp; Correlations between the useful and noise signals are accounted for by the&nbsp; [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power-Spectral_Density#Cross_power-spectral_density|$\text{cross power-spectral density}$]]&nbsp; ${\it Φ}_{sn}(f) = \hspace{0.1cm} –{ {\it Φ}_{ns} }^∗(f)$.&nbsp;
 +
*The output signal of the sought filter is denoted by&nbsp; $d(t)$,&nbsp; which should differ as little as possible from&nbsp; $s(t)$&nbsp; according to the MSE. &nbsp; $T_{\rm M}$&nbsp; again denotes the measurement duration.
 +
<br clear=all>
 +
Let the signal&nbsp; $s(t)$&nbsp; be mean-free&nbsp; $(m_s = 0)$&nbsp; and power-limited.&nbsp; This means: &nbsp; The signal energy&nbsp; $E_s$&nbsp; is infinite due to the infinite extension of the signal &nbsp; $s(t)$&nbsp; and the signal power has a finite value:
 +
:$$P_s  = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} |{s(t)|^2 \, {\rm{d}}t > 0.}$$
  
Für diese Optimierungsaufgabe gelten folgende Voraussetzungen:
+
*A fundamental difference with the matched filter task is the stochastic and power-limited useful signal&nbsp; $s(t)$.  
*Das zu rekonstruierende Signal $s(t)$ ist das Ergebnis eines Zufallsprozesses { $s(t)$}, von dem nur die statistischen Eigenschaften in Form des Leistungsdichtespektrums ${\it Φ}_s(f)$ bekannt ist.  
+
*Let us recall: &nbsp; In the matched filter, the signal&nbsp; $g(t)$&nbsp; to be reconstructed was deterministic, limited in time and thus also energy-limited.
*Das Störsignal $n(t)$ ist durch das LDS ${\it Φ}_n(f)$ gegeben. Korrelationen zwischen dem Nutz– und dem Störsignal berücksichtigen die [[Stochastische_Signaltheorie/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Kreuzleistungsdichtespektrum|Kreuzleistungsdichtespektren]] ${\it Φ}_{sn}(f) = \hspace{0.1cm} –{ {\it Φ}_{ns} }^∗(f).$
 
*Das Ausgangssignal des gesuchten Filters ist mit $d(t)$ bezeichnet, das sich entsprechend des MQF möglichst wenig von $d(t)$ unterscheiden soll. $T_{\rm M}$ bezeichnet wiederum die Messdauer.
 
  
:[[File:P_ID650__Sto_T_5_5_S1_neu.png | Zur Herleitung des Wiener-Filters]]
+
==Result of the filter optimization==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Here without proof:}$&nbsp; The&nbsp; &raquo;'''transmission function of the optimal filter'''&laquo;&nbsp; can be determined by the so-called&nbsp; "Wiener-Hopf integral equation",&nbsp; and is:
 +
:$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) + {\it \Phi }_{ns} (f)} }{ { {\it \Phi }_s (f) + {\it \Phi }_{sn} (f) + {\it \Phi }_{ns} (f) + {\it \Phi }_n (f)}}.$$
  
Das Signal $s(t)$ sei mittelwertfrei $(m_s = 0)$ und leistungsbegrenzt. Das bedeutet: Die Signalenergie $E_s$ ist aufgrund der unendlichen Ausdehnung des Signals $s(t)$ unendlich und die Signalleistung besitzt einen endlichen Wert:  
+
*[https://en.wikipedia.org/wiki/Andrey_Kolmogorov $\text{A. Kolmogorow}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Norbert_Wiener $\text{N. Wiener}$]&nbsp; independently solved this optimization problem almost at the same time.
:$$P_s  = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {s(t)^2 \, {\rm{d}}t > 0.}$$
+
*The index "WF" stands for Wiener filter and unfortunately does not reveal the merits of Kolmogorov.
 +
*The derivation of this result is not trivial and can be found for example in&nbsp; [Hän97]<ref>Hänsler, E.:&nbsp; Statistische Signale: Grundlagen und Anwendungen.&nbsp; 2. Auflage. Berlin – Heidelberg: Springer, 1997.</ref>.&nbsp;  }}
  
Ein grundsätzlicher Unterschied zur Aufgabenstellung beim Matched–Filter ist das stochastische und leistungsbegrenzte Nutzsignal $s(t)$. Erinnern wir uns: Beim Matched–Filter war das zu rekonstruierende Signal $g(t)$ deterministisch, zeitlich begrenzt und damit auch energiebegrenzt.
 
  
==Ergebnis der Filteroptimierung==
+
The mathematical derivation of the equation is omitted.&nbsp; Rather, this filter shall be clarified and interpreted in the following on the basis of some special cases.
A. Kolmogorow und N. Wiener haben dieses Optimierungsproblem nahezu zur gleichen Zeit unabhängig voneinander gelöst. Die Übertragungsfunktion des optimalen Filters kann über die so genannte ''Wiener-Hopfsche Integralgleichung'' ermittelt werden, und lautet:
+
*If signal and disturbance are uncorrelated &nbsp; ⇒  &nbsp; ${\it Φ}_{sn}(f) = {\it Φ}_{ns}(f) = 0$, the above equation simplifies as follows:
:$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) + {\it \Phi }_{ns} (f)} }{ { {\it \Phi }_s (f) + {\it \Phi }_{sn} (f) + {\it \Phi }_{ns} (f) + {\it \Phi }_n (f)}}.$$
+
:$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) }}{{ {\it \Phi }_s (f)  + {\it \Phi }_n (f) }} = \frac{1}{{1 + {\it \Phi }_n (f) / {\it \Phi }_s (f) }}.$$
 +
*The filter then acts as a frequency-dependent divider, with the divider ratio determined by the power-spectral densities of the useful signal and the noise signal.
 +
*The "passband" is predominantly at the frequencies where the useful signal has much larger components than the interference:
 +
:$${\it Φ}_s(f) \gg {\it Φ}_n(f).$$
 +
*The&nbsp; ''mean square error''&nbsp; (MSE) between the filter output signal&nbsp; $d(t)$&nbsp; and the input signal&nbsp; $s(t)$&nbsp; is
 +
:$${\rm MSE} = \int\limits_{ - \infty }^{ + \infty } {\frac{{ {\it \Phi }_s (f) \cdot {\it \Phi }_n (f)}}{{ {\it \Phi }_s(f) + {\it \Phi }_n (f)}}\,{\rm{d}}f = \int\limits_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi }_n (f)}\, {\rm{d}}f.}$$
 +
 
 +
 
 +
==Interpretation of the Wiener filter==
 +
<br>
 +
Now we will illustrate the Wiener-Kolmogorov filter with two examples.
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; To illustrate the Wiener filter, we consider as a limiting case a transmitted signal&nbsp; $s(t)$&nbsp; with the power-spectral density&nbsp; ${\it Φ}_s(f) = P_{\rm S} · δ(f ± f_{\rm S}).$
 +
*Thus, it is known that&nbsp; $s(t)$&nbsp; is a harmonic oscillation with frequency&nbsp; $f_{\rm S}$.&nbsp;
 +
*On the other hand, the amplitude and phase of the current sample function&nbsp; $s(t)$ are unknown.
 +
 
 +
 
 +
With white noise  &nbsp; ⇒ &nbsp; ${\it Φ}_n(f) = N_0/2$ &nbsp; the frequency response of the Wiener filter is thus:
 +
:$$H_{\rm WF} (f) = \frac{1}{ {1 +({N_0 /2})/{\big[ P_{\rm S} \cdot\delta ( {f \pm f_{\rm S} } \big ]} })}.$$
 +
*For all frequencies except&nbsp; $f = ±f_{\rm S}$,&nbsp; &nbsp; $H_{\rm WF}(f) = 0$ is obtained, since here the denominator becomes infinitely large.
 +
*If we further consider that&nbsp; $δ(f = ±f_{\rm S})$&nbsp; is infinitely large at the point&nbsp; $f = ±f_{\rm S}$,&nbsp; we further obtain&nbsp; $H_{\rm MF}(f = ±f_{\rm S} ) = 1. $
 +
*Thus, the optimal filter is a band-pass around&nbsp; $f_{\rm S}$&nbsp; with infinitesimally small bandwidth.
 +
*The mean square error between the transmitted signal&nbsp; $s(t)$&nbsp; and the filter output signal&nbsp; $d(t)$&nbsp; is
 +
:$${\rm{MSE} } = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi_n} (f) \,{\rm{d} }f = \mathop {\lim }\limits_{\varepsilon \hspace{0.03cm} {\rm >  \hspace{0.03cm}0,}\;\;\varepsilon  \hspace{0.03cm} \to  \hspace{0.03cm}\rm 0 } }\hspace{0.1cm} \int_{f_{\rm S}  - \varepsilon }^{f_{\rm S}  + \varepsilon }\hspace{-0.3cm} {N_0 }\,\,{\rm{d} }f = 0.$$
 +
*This infinitely narrow band-pass  filter would allow complete regeneration of the harmonics in terms of amplitude and phase, given the assumptions made.&nbsp; Thus, regardless of the magnitude of the interference&nbsp; $(N_0)$,&nbsp; &nbsp; $d(t) = s(t)$&nbsp; would apply.
 +
*However, an infinitely narrow filter is not feasible.&nbsp; With finite bandwidth&nbsp; $Δf$,&nbsp; the mean square error is  ${\rm MSE} = N_0 · Δf$. }}
  
Der Index „WF” steht für Wiener-Filter und lässt leider die Verdienste von Kolmogorow nicht erkennen. Auf die exakte, mathematische Ableitung der Gleichung wird hier verzichtet. Vielmehr soll dieses Filter  im Folgenden an einigen Sonderfällen verdeutlicht und interpretiert werden.
 
*Sind Signal und Störung unkorreliert  ⇒  ${\it Φ}_{sn}(f) = {\it Φ}_{ns}(f) = 0$, so vereinfacht sich die obige Gleichung wie folgt:
 
:$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) }}{{ {\it \Phi }_s (f)  + {\it \Phi }_n (f) }} = \frac{1}{{1 + {\it \Phi }_n (f) / {\it \Phi }_s (f) }}.$$
 
*Das Filter wirkt dann wie ein frequenzabhängiger Teiler, wobei das Teilerverhältnis durch die Leistungsdichtespektren von Nutzsignal und Störsignal bestimmt wird.
 
*Der „Durchlassbereich” liegt vorwiegend bei den Frequenzen, bei denen das Nutzsignal sehr viel größere Anteile besitzt als die Störung: ${\it Φ}_s(f) \gg {\it Φ}_n(f).$
 
*Der mittlere quadratische Fehler (MQF) zwischen dem Filterausgangssignal $d(t)$ und dem zu approximierenden Eingangssignal $s(t)$ ist
 
:$${\rm MQF} = \int\limits_{ - \infty }^{ + \infty } {\frac{{ {\it \Phi }_s (f) \cdot {\it \Phi }_n (f)}}{{ {\it \Phi }_s(f) + {\it \Phi }_n (f)}}\,{\rm{d}}f = \int\limits_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi }_n (f)}\, {\rm{d}}f.}$$
 
  
 +
This example has dealt with a special case where the best possible result&nbsp; $\rm MSE = 0$&nbsp; would be possible, at least theoretically.&nbsp; The following example makes more realistic assumptions and gives the result&nbsp; $\rm MSE > 0$.
  
Die Herleitung dieser Ergebnisse ist durchaus nicht trivial und zum Beispiel in [Hän97]<ref>Hänsler, E.: ''Statistische Signale: Grundlagen und Anwendungen.'' 2. Auflage. Berlin – Heidelberg: Springer, 1997.</ref>  zu finden.  
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; Now consider a&nbsp; ''stochastic rectangular binary signal''&nbsp; $s(t)$, additively overlaid by white noise&nbsp; $n(t)$.&nbsp; 
 +
[[File:P_ID662__Sto_T_5_5_S3_neu.png |frame| Signals at the Wiener filter | right]]
 +
The diagram contains the following plots:
 +
*At the top, the sum signal&nbsp; $r(t) = s(t) + n(t)$&nbsp; is shown in gray for&nbsp; ${\it Φ}_0/N_0 = 5$,&nbsp; where&nbsp; ${\it Φ}_0$&nbsp; denotes the energy of a single pulse and&nbsp; $N_0$&nbsp; indicates the power density of the white noise. The useful signal&nbsp; $s(t)$&nbsp; is drawn in blue.
 +
*In the center of the figure, the power-spectral densities&nbsp; ${\it Φ}_s(f)$&nbsp; and&nbsp; ${\it Φ}_n(f)$&nbsp; are sketched in blue and red, respectively, and given in terms of formulas.&nbsp; The resulting frequency response&nbsp; $H_{\rm WF}(f)$ is drawn in green.
 +
*The lower figure shows the output signal&nbsp; $d(t)$&nbsp; of the Wiener filter as a gray curve in comparison to the transmitted signal&nbsp; $s(t)$ drawn in blue.&nbsp; Ideally,&nbsp; $d(t) = s(t)$&nbsp; should be valid.
  
==Interpretation des Wiener-Filters==
 
In diesem Abschnitten wird das Wiener–Kolmogorow–Filter anhand zweier Beispiele verdeutlicht.
 
{{Box}}
 
'''Beispiel 1''':&nbsp; Zur Verdeutlichung des Wiener–Filters betrachten wir zunächst als Grenzfall ein Sendesignal $s(t)$ mit dem LDS ${\it Φ}_s(f) = P_s · δ(f ± f_s).$
 
*Damit ist bekannt, dass $s(t)$ eine harmonische Schwingung mit der Frequenz $f_s$ ist.
 
*Unbekannt sind dagegen Amplitude und Phase der aktuellen Musterfunktion $s(t)$.
 
  
 +
The <u>bottom plot</u> shows:
  
Bei weißem Rauschen  ⇒ ${\it Φ}_n(f) = N_0/2$ – lautet somit der Frequenzgang des Wiener-Filters:
+
'''(1)''' &nbsp;  The mean square error (MSE) is obtained by comparing the signals&nbsp; $d(t)$&nbsp; and&nbsp; $s(t)$.  
:$$H_{\rm WF} (f) = \frac{1}{{1 +({N_0 /2})/{( P_s \cdot\delta ( {f \pm f_s } )}})}.$$
 
*Bei allen Frequenzen mit Ausnahme von $f = ±f_s$ ergibt sich $H_{\rm WF}(f) = 0$, da hier der Nenner unendlich groß wird.
 
*Berücksichtigt man weiter, dass $δ(f = ±f_s)$ an der Stelle $f = ±f_s$ unendlich groß ist, so erhält man weiter $H_{\rm MF}(f = ±f_s ) = 1. $
 
*Das optimale Filter ist somit ein Bandpass um $f_s$ mit unendlich kleiner Bandbreite. Der mittlere quadratische Fehler zwischen dem Sendesignal $s(t)$ und dem Filterausgangssignal $d(t)$ beträgt
 
:$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi_n} (f) \,{\rm{d}}f = \mathop {\lim }\limits_{\varepsilon \hspace{0.03cm} {\rm >  \hspace{0.03cm}0,}\;\;\varepsilon  \hspace{0.03cm} \to  \hspace{0.03cm}\rm 0 } }\hspace{0.1cm} \int_{f_s  - \varepsilon }^{f_s  + \varepsilon }\hspace{-0.3cm} {N_0 }\,\,{\rm{d}}f = 0.$$
 
*Dieses unendlich schmale Bandpass–Filter würde bei den getroffenen Voraussetzungen die vollständige Regenerierung der Harmonischen hinsichtlich Amplitude und Phase erlauben. Unabhängig von der Größe der Störung $(N_0)$ würde somit $d(t) = s(t)$ gelten.
 
*Allerdings ist ein unendlich schmales Filter nicht realisierbar. Bei endlicher Bandbreite $Δf$ ist der mittlere quadratische Fehler (MQF) gleich $N_0 · Δf$. <br>{{end}}
 
  
 +
'''(2)''' &nbsp; Numerical evaluation showed&nbsp; $\rm MSE$&nbsp; to be about&nbsp; $11\%$&nbsp; of the useful power&nbsp; $P_{\rm S} $.
  
Dieses Beispiel hat einen Sonderfall behandelt, bei dem das bestmögliche Ergebnis $\rm MQF = 0$ zumindest theoretisch möglich ist. Das folgende Beispiel geht von realistischeren Annahmen aus und liefert das Ergebnis $\rm MQF > 0$.
+
'''(3)''' &nbsp; The signal&nbsp; $d(t)$&nbsp; predominantly lacks the higher frequency signal components&nbsp; (i.e. the jumps).
  
{{Box}}
+
'''(4)''' &nbsp; These components are filtered out in favor of a better noise suppression of these frequencies.
'''Beispiel 2''':&nbsp; Nun betrachten wir ein ''stochastisches rechteckförmiges Binärsignal'' $s(t)$, das durch weißes Rauschen $n(t)$ additiv überlagert ist. Die Grafik enthält folgende Diagramme:
 
[[File:P_ID662__Sto_T_5_5_S3_neu.png | Signale beim Wiener-Filter | rechts]]
 
*Oben ist grau das Summensignal $r(t) = s(t) + n(t)$ für ${\it Φ}_0/N_0 = 5$ dargestellt, wobei ${\it Φ}_0$ die Energie eines Einzelimpulses bezeichnet und $N_0$ die Rauschleistungsdichte des weißen Rauschens angibt.
 
*In Bildmitte sind die Leistungsdichtespektren ${\it Φ}_s(f)$ und ${\it Φ}_n(f)$ in blauer bzw. roter Farbe skizziert und formelmäßig angegeben. Grün gezeichnet ist der Frequenzgang $H_{\rm WF}(f)$.
 
*Das untere Bild zeigt als grauen Kurvenzug das Ausgangssignal $d(t)$ des Wiener-Filters im Vergleich zum blau gezeichneten Sendesignal $s(t)$. Im Idealfall sollte $d(t) = s(t)$ gelten.
 
  
  
Die untere Darstellung zeigt:
+
Under these conditions, no other filter yields a smaller (mean square) error than the Wiener filter.
  
*Der mittlere quadratische Fehler (MQF) zwischen den Signalen $d(t)$ und $s(t)$ beträgt hier etwa 11% der Nutzleistung $P_s$.
+
Its frequency response (green curve) is as follows:
*Im Signal $d(t)$ fehlen vorwiegend die höherfrequenten Signalanteile (also die Sprünge).
+
:$$H_{\rm WF} (f) = \frac{1}{ {1 + ({N_0 /2})/( {\it \Phi}_0 \cdot {\rm si^2} ( \pi f T  )})} \hspace{0.15cm} .$$
*Diese Anteile werden zugunsten einer besseren Störunterdrückung bei diesen Frequenzen ausgefiltert.  
 
  
 +
From the <u>central plot</u> you can see further:
 +
*The DC signal transfer factor here results in&nbsp; $H_{\rm WF}(f = 0) = {\it Φ}_0/({\it Φ}_0 + N_0/2) = 10/11.$
 +
*For multiples of the symbol repetition rate&nbsp; $1/T$, where the stochastic useful signal&nbsp; $s(t)$&nbsp; has no spectral components,&nbsp; $H_{\rm WF}(f) = 0$.
 +
*The more useful signal components are present at a certain frequency, the more permeable the Wiener filter is at this frequency.}}
  
Mit keinem anderen Filter ergibt sich bei diesen Voraussetzungen ein kleinerer (mittlerer quadratischer) Fehler als mit dem Wiener-Filter. Dessen Frequenzgang lautet hier:  
+
==Exercise for the chapter==
$$H_{\rm WF} (f) = \frac{1}{{1 + ({N_0 /2})/( {\it \Phi}_0 \cdot {\rm si^2} ( \pi f T  )})} \hspace{0.15cm} .$$
+
<br>
 +
[[Aufgaben:Exercise_5.9:_Minimization_of_the_MSE|Exercise 5.9: Minimization of the MSE]]
  
Aus dem mittleren Diagramm erkennt  man:
 
*Der Gleichsignalübertragungsfaktor ergibt sich zu $H_{\rm WF}(f = 0) = {\it Φ}_0/({\it Φ}_0 + N_0/2) = 10/11.$
 
*Bei Vielfachen der Symbolfolgefrequenz $1/T$, bei denen das stochastische Nutzsignal $s(t)$ keine Spektralanteile besitzt, ist $H_{\rm WF}(f) = 0$.
 
*Je mehr Nutzsignalanteile bei einer bestimmten Frequenz vorhanden sind, desto durchlässiger ist bei dieser Frequenz auch das Wiener-Filter. {{end}}
 
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 11:26, 22 December 2022

Optimization criterion of the Wiener-Kolmogorow filter


As another example of optimal filtering, we now consider the task of reconstructing as well as possible the shape of an useful signal  $s(t)$  from the received signal  $r(t)$,  which is disturbed by additive noise  $n(t)$,  in terms of the  "mean square error"  (MSE):

$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t} \mathop = \limits^! {\rm{Minimum}}.$$

The filter is named after its inventors  $\text{Norbert Wiener}$  and  $\text{Andrei Nikolajewitsch Kolmogorow}$.  We denote the corresponding frequency response by  $H_{\rm WF}(f).$

Derivation of the Wiener filter

The following conditions apply to this optimization task:

  • The signal  $s(t)$  to be reconstructed is the result of a random process  $\{s(t)\}$, of which only the statistical properties are known in the form of the power-spectral density  ${\it Φ}_s(f)$. 
  • The noise signal  $n(t)$  is given by the PSD  ${\it Φ}_n(f)$.  Correlations between the useful and noise signals are accounted for by the  $\text{cross power-spectral density}$  ${\it Φ}_{sn}(f) = \hspace{0.1cm} –{ {\it Φ}_{ns} }^∗(f)$. 
  • The output signal of the sought filter is denoted by  $d(t)$,  which should differ as little as possible from  $s(t)$  according to the MSE.   $T_{\rm M}$  again denotes the measurement duration.


Let the signal  $s(t)$  be mean-free  $(m_s = 0)$  and power-limited.  This means:   The signal energy  $E_s$  is infinite due to the infinite extension of the signal   $s(t)$  and the signal power has a finite value:

$$P_s = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{{T_{\rm M} }}\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} |{s(t)|^2 \, {\rm{d}}t > 0.}$$
  • A fundamental difference with the matched filter task is the stochastic and power-limited useful signal  $s(t)$.
  • Let us recall:   In the matched filter, the signal  $g(t)$  to be reconstructed was deterministic, limited in time and thus also energy-limited.

Result of the filter optimization


$\text{Here without proof:}$  The  »transmission function of the optimal filter«  can be determined by the so-called  "Wiener-Hopf integral equation",  and is:

$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) + {\it \Phi }_{ns} (f)} }{ { {\it \Phi }_s (f) + {\it \Phi }_{sn} (f) + {\it \Phi }_{ns} (f) + {\it \Phi }_n (f)}}.$$
  • $\text{A. Kolmogorow}$  and  $\text{N. Wiener}$  independently solved this optimization problem almost at the same time.
  • The index "WF" stands for Wiener filter and unfortunately does not reveal the merits of Kolmogorov.
  • The derivation of this result is not trivial and can be found for example in  [Hän97][1]


The mathematical derivation of the equation is omitted.  Rather, this filter shall be clarified and interpreted in the following on the basis of some special cases.

  • If signal and disturbance are uncorrelated   ⇒   ${\it Φ}_{sn}(f) = {\it Φ}_{ns}(f) = 0$, the above equation simplifies as follows:
$$H_{\rm WF} (f) = \frac{{ {\it \Phi }_s (f) }}{{ {\it \Phi }_s (f) + {\it \Phi }_n (f) }} = \frac{1}{{1 + {\it \Phi }_n (f) / {\it \Phi }_s (f) }}.$$
  • The filter then acts as a frequency-dependent divider, with the divider ratio determined by the power-spectral densities of the useful signal and the noise signal.
  • The "passband" is predominantly at the frequencies where the useful signal has much larger components than the interference:
$${\it Φ}_s(f) \gg {\it Φ}_n(f).$$
  • The  mean square error  (MSE) between the filter output signal  $d(t)$  and the input signal  $s(t)$  is
$${\rm MSE} = \int\limits_{ - \infty }^{ + \infty } {\frac{{ {\it \Phi }_s (f) \cdot {\it \Phi }_n (f)}}{{ {\it \Phi }_s(f) + {\it \Phi }_n (f)}}\,{\rm{d}}f = \int\limits_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi }_n (f)}\, {\rm{d}}f.}$$


Interpretation of the Wiener filter


Now we will illustrate the Wiener-Kolmogorov filter with two examples.

$\text{Example 1:}$  To illustrate the Wiener filter, we consider as a limiting case a transmitted signal  $s(t)$  with the power-spectral density  ${\it Φ}_s(f) = P_{\rm S} · δ(f ± f_{\rm S}).$

  • Thus, it is known that  $s(t)$  is a harmonic oscillation with frequency  $f_{\rm S}$. 
  • On the other hand, the amplitude and phase of the current sample function  $s(t)$ are unknown.


With white noise   ⇒   ${\it Φ}_n(f) = N_0/2$   the frequency response of the Wiener filter is thus:

$$H_{\rm WF} (f) = \frac{1}{ {1 +({N_0 /2})/{\big[ P_{\rm S} \cdot\delta ( {f \pm f_{\rm S} } \big ]} })}.$$
  • For all frequencies except  $f = ±f_{\rm S}$,    $H_{\rm WF}(f) = 0$ is obtained, since here the denominator becomes infinitely large.
  • If we further consider that  $δ(f = ±f_{\rm S})$  is infinitely large at the point  $f = ±f_{\rm S}$,  we further obtain  $H_{\rm MF}(f = ±f_{\rm S} ) = 1. $
  • Thus, the optimal filter is a band-pass around  $f_{\rm S}$  with infinitesimally small bandwidth.
  • The mean square error between the transmitted signal  $s(t)$  and the filter output signal  $d(t)$  is
$${\rm{MSE} } = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f) \cdot {\it \Phi_n} (f) \,{\rm{d} }f = \mathop {\lim }\limits_{\varepsilon \hspace{0.03cm} {\rm > \hspace{0.03cm}0,}\;\;\varepsilon \hspace{0.03cm} \to \hspace{0.03cm}\rm 0 } }\hspace{0.1cm} \int_{f_{\rm S} - \varepsilon }^{f_{\rm S} + \varepsilon }\hspace{-0.3cm} {N_0 }\,\,{\rm{d} }f = 0.$$
  • This infinitely narrow band-pass filter would allow complete regeneration of the harmonics in terms of amplitude and phase, given the assumptions made.  Thus, regardless of the magnitude of the interference  $(N_0)$,    $d(t) = s(t)$  would apply.
  • However, an infinitely narrow filter is not feasible.  With finite bandwidth  $Δf$,  the mean square error is ${\rm MSE} = N_0 · Δf$.


This example has dealt with a special case where the best possible result  $\rm MSE = 0$  would be possible, at least theoretically.  The following example makes more realistic assumptions and gives the result  $\rm MSE > 0$.

$\text{Example 2:}$  Now consider a  stochastic rectangular binary signal  $s(t)$, additively overlaid by white noise  $n(t)$. 

Signals at the Wiener filter

The diagram contains the following plots:

  • At the top, the sum signal  $r(t) = s(t) + n(t)$  is shown in gray for  ${\it Φ}_0/N_0 = 5$,  where  ${\it Φ}_0$  denotes the energy of a single pulse and  $N_0$  indicates the power density of the white noise. The useful signal  $s(t)$  is drawn in blue.
  • In the center of the figure, the power-spectral densities  ${\it Φ}_s(f)$  and  ${\it Φ}_n(f)$  are sketched in blue and red, respectively, and given in terms of formulas.  The resulting frequency response  $H_{\rm WF}(f)$ is drawn in green.
  • The lower figure shows the output signal  $d(t)$  of the Wiener filter as a gray curve in comparison to the transmitted signal  $s(t)$ drawn in blue.  Ideally,  $d(t) = s(t)$  should be valid.


The bottom plot shows:

(1)   The mean square error (MSE) is obtained by comparing the signals  $d(t)$  and  $s(t)$.

(2)   Numerical evaluation showed  $\rm MSE$  to be about  $11\%$  of the useful power  $P_{\rm S} $.

(3)   The signal  $d(t)$  predominantly lacks the higher frequency signal components  (i.e. the jumps).

(4)   These components are filtered out in favor of a better noise suppression of these frequencies.


Under these conditions, no other filter yields a smaller (mean square) error than the Wiener filter.

Its frequency response (green curve) is as follows:

$$H_{\rm WF} (f) = \frac{1}{ {1 + ({N_0 /2})/( {\it \Phi}_0 \cdot {\rm si^2} ( \pi f T )})} \hspace{0.15cm} .$$

From the central plot you can see further:

  • The DC signal transfer factor here results in  $H_{\rm WF}(f = 0) = {\it Φ}_0/({\it Φ}_0 + N_0/2) = 10/11.$
  • For multiples of the symbol repetition rate  $1/T$, where the stochastic useful signal  $s(t)$  has no spectral components,  $H_{\rm WF}(f) = 0$.
  • The more useful signal components are present at a certain frequency, the more permeable the Wiener filter is at this frequency.

Exercise for the chapter


Exercise 5.9: Minimization of the MSE


References

  1. Hänsler, E.:  Statistische Signale: Grundlagen und Anwendungen.  2. Auflage. Berlin – Heidelberg: Springer, 1997.