Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.7Z: Overall Systems Analysis

From LNTwww
(Redirected from Aufgabe 1.7Z: Systemanalyse)

System with Gaussian low-passe filters and non-linear characteristic curve

An overall system  G  with input w(t)  and output  z(t)  consists of three components:

  • The first component is a Gaussian low-pass filter with impulse response
h1(t)=1Δt1eπ(t/Δt1)2,Δt1=0.3ms.
  • This is then followed by a non-linearity with the characteristic curve
y(t)={+8V2x(t)8Vf¨urf¨urf¨urx(t)+4V,4V<x(t)<+4V,x(t)4V.
⇒   The input signal  x(t)  of the non-linearity is amplified by the factor  2  and – if necessary – limited to the range  ±8 V .
  • At the end of the chain there is again a Gaussian low-pass filter given by its frequency response:
H3(f)=eπ(f/Δf3)2,Δf3=2.5kHz.

Let the input signal w(t)  of the overall system be a Gaussian pulse with amplitude  5 V  and variable (equivalent) duration  T:

w(t)=5Veπ(t/T)2.

What needs to be investigated is the range in which the equivalent impulse duration  T  of this Gaussian pulse can vary such that the overall system can be entirely described by the frequency response

HG(f)=Keπ(f/ΔfG)2.

Here, the subscript "G" in frequency response and bandwidth stands for "Gesamtsystem" (German for "overall system").





Please note:



Questions

1

What conditions must be satisfied for the overall system to be describable by a single frequency response?

There is a linear relationship between  w(t)  and  z(t).
H3(f)  must be more narrow-band than  H1(f).
The signal  x(t)  must not be greater in magnitude than  4 V.

2

Compute the maximum value for the equivalent impulse duration  T so that the conditions given in  (1)  are satisfiable.

Tmax = 

 ms

3

Specify the parameters of the overall frequency response  HG(f) .

K = 

ΔfG= 

 kHz


Solution

(1)  Answers 1 and 3 are correct:

  • The first statement is correct:   A frequency response can only be specified for a linear system.
  • For this to be possible here, nonlinearity must not play a role.
  • That is, it must be ensured that  |x(t)|  is not greater than  4 V .
  • In contrast to this, the second statement is not true:  The bandwidth of  H3(f)  does not affect whether the non-linearity can be eliminated or not.


(2)  The first Gaussian low-pass filter is described in the frequency domain as follows:

X(f)=W(f)H1(f)=5VTeπ(fT)2eπ(f/Δf1)2=5VTeπf2(T2+Δt21)=5VTeπ(f/Δfx)2.
  • Here,   Δf_x  denotes the equivalent bandwidth of  X(f).
  • The signal value at  t = 0  is equal to the spectral area and at the same time to the maximum value of the signal:
  • This should not exceed 4 \ \rm V:
x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.
  • From this it follows by comparison of coefficients:
\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm} \Rightarrow \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16} \Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}
\Rightarrow \hspace{0.1cm}\frac{ \Delta t_1^2}{T^2} > \frac{9}{16}\hspace{0.3cm}\Rightarrow \hspace{0.5cm}\frac{T^2}{ \Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.
  • The control calculation yields:
\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}
\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot {2\,\rm kHz} = {4\,\rm V}.


(3)  The Gaussian low-pass filters satisfy the condition  H_1(f = 0) = H_3(f = 0) = 1.

  • Taking into account the gain of the second block in the linear domain the following is thus obtained for the total gain:
\underline{K \ = \ 2}.
  • For the equivalent impulse duration of the overall system it holds that:
\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow \; \; \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.