Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

Exercise 3.10Z: BSC Channel Capacity

From LNTwww

Entropies of  "BC"  and  "BSC"

The channel capacity  C  was defined by  Claude E. Shannon  as the maximum mutual information, whereby the maximization refers solely to the source statistics:

C=maxPX(X)I(X;Y)

In the binary channel with the probability function  PX(X)=[p0, p1]  only one parameter is optimizable, for example   p0.  The probability for a  1  is thus also fixed:   p1=1p0.

The upper graph (reddish background) summarises the results for the  asymmetric binary channel  with  ε_0 = 0.01  and  ε_1 = 0.2 , which was also considered in the theory section.

The maximization leads to the result  p_0 = 0.55   ⇒   p_1 = 0.45,  and one obtains for the channel capacity:

C_{\rm BC} = \hspace{-0.05cm} \max_{P_X(X)} \hspace{0.1cm} I(X;Y) \big |_{p_0 \hspace{0.05cm} = \hspace{0.05cm}0.55} \hspace{0.05cm}=\hspace{0.05cm} 0.5779\,{\rm bit} \hspace{0.05cm}.

In the lower graph (blue background), the same information-theoretical quantities are given for the  Binary Symmetric Channel  \rm (BSC)  with the falsification probabilities  ε_0 = ε_1 = ε = 0.1,  which was also assumed for  Exercise 3.10.

In the present exercise you are

  • to analyze the entropies  H(X)H(Y)H(X|Y)  and  H(Y|X),
  • to optimize the source parameter  p_0  with respect to maximum mutual information  I(X; Y) ,
  • to determine the channel capacity  C(ε) ,
  • to give a closed equation for  C(ε)  by generalization for the BSC channel model  (initially for  ε = 0.1).



Hints:



Questions

1

Which statements are true for the conditional entropies in the BSC model?

The equivocation results in  H(X|Y) = H_{\rm bin}(ε).
The irrelevance results in  H(Y|X) = H_{\rm bin}(ε).
The irrelevance results in  H(Y|X) = H_{\rm bin}(p_0).

2

Which statements are true for the channel capacity  C_{\rm BSC}  of the BSC model?

The channel capacity is equal to the maximum mutual information.
For the BSC, maximization leads to the result  p_0 = p_1 = 0.5.
For  p_0 = p_1 = 0.5   ,  H(X) = H(Y) = 1 \ \rm bit.

3

Which channel capacity  C_{\rm BSC}  results depending on the BSC parameter  ε?

ε = 0.0\text{:} \hspace{0.5cm} C_{\rm BSC} \ = \

\ \rm bit
ε = 0.1\text{:} \hspace{0.5cm} C_{\rm BSC} \ = \

\ \rm bit
ε = 0.5\text{:} \hspace{0.5cm} C_{\rm BSC} \ = \

\ \rm bit

4

Which channel capacity  C_{\rm BSC}  results depending on the BSC parameter   ε?

ε = 1.0\text{:} \hspace{0.5cm} C_{\rm BSC} \ = \

\ \rm bit
ε = 0.9\text{:} \hspace{0.5cm} C_{\rm BSC} \ = \

\ \rm bit


Solution

(1)  The  proposed solution 2 is correct, as the following calculation shows:

H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = p_0 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} + p_0 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} +p_1 \cdot \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + p_1 \cdot (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon}
\Rightarrow \hspace{0.3cm} H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = (p_0 + p_1) \cdot \left [ \varepsilon \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \varepsilon} \right ] \hspace{0.05cm}.
  • With  p_0 + p_1 = 1  and the binary entropy function  H_{\rm bin},  one obtains the proposed result:   H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin}(\varepsilon)\hspace{0.05cm}.
  • For  ε = 0.1  we get  H(Y|X) = 0.4690 \ \rm bit.  The same value stands for  p_0=0.50  in the given table.
  • From the table one can also see that for the BSC model (blue background) as well as for the more general (asymmetric) BC model (red background)
    the equivocation  H(X|Y)  depends on the source symbol probabilities  p_0  and  p_1.  It follows that proposed solution 1 cannot be correct.
  • The irrelevance  H(Y|X)  is independent   of the source statistics, so that solution proposal 3 can also be excluded.



(2)  All given alternative solutions are correct:

  • The channel capacity is defined as the maximum mutual information, where the maximization has to be done with respect to  P_X = (p_0, p_1) :
C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.
  • The equation is generally valid, i.e. also for the unbalanced binary channel highlighted in red.
  • The mutual information can be calculated, for example, as  I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm}
    where according to subtask  (1)  the term  H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm}  is independent of  p_0  or  p_1 = 1- p_0 .
  • The maximum mutual information thus results exactly when the sink entropy  H(Y)  is maximum.  This is the case for  p_0 = p_1 = 0.5:
H(X) = H(Y) = 1 \ \rm bit.


Binary entropy function and BSC channel capacity

(3)  According to the subtasks  (1)  and  (2)  one obtains for the BSC channel capacity:

C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.

The graph shows the binary entropy function on the left and the channel capacity on the right.  One obtains:

  • for  ε = 0.0  (error-free channel):
        C = 1\ \rm (bit)   ⇒   dot with yellow filling,
  • for  ε = 0.1  (considered so far):
        C = 0.531\ \rm (bit)   ⇒   dot with green filling,
  • for  ε = 0.5  (completely disturbed):
        C = 0\ \rm (bit)   ⇒   dot with grey filling.


(4)  From the graph one can see that from an information-theoretical point of view  ε = 1  is identical to  ε = 0 :

C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}1} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0} \hspace{0.15cm} \underline {=1\,{\rm (bit)}} \hspace{0.05cm}.
  • The channel only carries out a renaming here.  This is called  "mapping".
  • Every  0  becomes a  1  and every  1  becomes a  0.  Accordingly:
C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.9} \hspace{0.05cm}= C_{\rm BSC} \big |_{\hspace{0.05cm}\varepsilon \hspace{0.05cm} = \hspace{0.05cm}0.1} \hspace{0.15cm} \underline {=0.531\,{\rm (bit)}} \hspace{0.05cm}