Aufgabe 3.4: Entropie für verschiedene Wahrscheinlichkeiten

From LNTwww

Wahrscheinlichkeitsfunktionen, jeweils mit  $M = 4$  Elementen

In der ersten Zeile der nebenstehenden Tabelle ist die im Folgenden die mit  $\rm (a)$  bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für diese PMF  $P_X(X) = \big [0.1, \ 0.2, \ 0.3, \ 0.4 \big ]$  soll in der Teilaufgabe  (1)  die Entropie berechnet werden:

$$H_{\rm a}(X) = {\rm E} \big [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\big ]= - {\rm E} \big [ {\rm log}_2 \hspace{0.1cm}{P_{X}(X)}\big ].$$

Da hier der Logarithmus zur Basis  $2$  verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.

In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:

  • Durch geeignete Variation von  $p_3$  und  $p_4$  kommt man zur maximalen Entropie  $H_{\rm b}(X)$  unter der Voraussetzung  $p_1 = 0.1$  und  $p_2 = 0.2$   ⇒   Teilaufgabe  (2).
  • Durch geeignete Variation von  $p_2$  und  $p_3$ kommt man zur maximalen Entropie  $H_{\rm c}(X)$  unter der Voraussetzung  $p_1 = 0.1$  und  $p_4 = 0.4$   ⇒   Teilaufgabe  (3).
  • In der Teilaufgabe  (4)  sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie   ⇒   $H_{\rm max}(X)$  zu bestimmen sind.





Hinweise:


Fragebogen

1

Zu welcher Entropie führt die Wahrscheinlichkeitsfunktion  $P_X(X) = \big [ 0.1, \ 0.2, \ 0.3, \ 0.4 \big ]$ ?

$H_{\rm a}(X) \ = \ $

$\ \rm bit$

2

Es gelte nun allgemein  $P_X(X) = \big [ 0.1, \ 0.2, \ p_3, \ p_4\big ]$.  Welche Entropie erhält man, wenn  $p_3$  und  $p_4$  bestmöglich gewählt werden?

$H_{\rm b}(X) \ = \ $

$\ \rm bit$

3

Nun gelte  $P_X(X) = \big [ 0.1, \ p_2, \ p_3, \ 0.4 \big ]$.  Welche Entropie erhält man, wenn  $p_2$  und  $p_3$  bestmöglich gewählt werden?

$H_{\rm c}(X) \ = \ $

$\ \rm bit$

4

Welche Entropie erhält man, wenn alle Wahrscheinlichkeiten  $(p_1, \ p_2 , \ p_3, \ p_4)$  bestmöglich gewählt werden können?

$H_{\rm max}(X) \ = \ $

$\ \rm bit$


Musterlösung

(1)  Mit  $P_X(X) = \big [ 0.1, \ 0.2, \ 0.3, \ 0.4 \big ]$  erhält man für die Entropie:

$$H_{\rm a}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.3} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.846} \hspace{0.05cm}.$$

Hier (und bei den anderen Aufgaben) ist jeweils die Pseudo–Einheit „bit” anzufügen.


(2)  Die Entropie  $H_{\rm b}(X)$  lässt sich als Summe zweier Anteile  $H_{\rm b1}(X)$  und  $H_{\rm b2}(X)$  darstellen, mit:

$$H_{\rm b1}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} = 0.797 \hspace{0.05cm},$$
$$H_{\rm b2}(X) = p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} + (0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}.$$
  • Die zweite Funktion ist maximal für  $p_3 = p_4 = 0.35$.  Ein ähnlicher Zusammenhang hat sich bei der binären Entropiefunktion ergeben. 
  • Damit erhält man:
$$H_{\rm b2}(X) = 2 \cdot p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} = 0.7 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.35} = 1.060 $$
$$ \Rightarrow \hspace{0.3cm} H_{\rm b}(X) = H_{\rm b1}(X) + H_{\rm b2}(X) = 0.797 + 1.060 \hspace{0.15cm} \underline {= 1.857} \hspace{0.05cm}.$$


(3)  Analog zur Teilaufgabe  (2)  ergibt sich mit  $p_1 = 0.1$  und  $p_4 = 0.4$  das Maximum für  $p_2 = p_3 = 0.25$:

$$H_{\rm c}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 2 \cdot 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.861} \hspace{0.05cm}.$$


(4)  Die maximale Entropie für den Symbolumfang  $M=4$  ergibt sich bei gleichen Wahrscheinlichkeiten, also für  $p_1 = p_2 = p_3 = p_4 = 0.25$:

$$H_{\rm max}(X) = {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.$$
  • Die Differenz der Entropien entsprechend  (4)  und  (3)  ergibt  ${\rm \Delta} H(X) = 0.139 \ \rm bit$.  Hierbei gilt:
$${\rm \Delta} H(X) = 1- 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} - 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.05cm}.$$
  • Mit der binären Entropiefunktion
$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}$$
lässt sich hierfür auch schreiben:
$${\rm \Delta} H(X) = 0.5 \cdot \big [ 1- H_{\rm bin}(0.2) \big ] = 0.5 \cdot \big [ 1- 0.722 \big ] = 0.139 \hspace{0.05cm}.$$