Aufgabe 3.4: GMSK–Modulation

From LNTwww

Verschiedene Signale der GMSK-Modulation

Das bei GSM eingesetzte Modulationsverfahren ist bekanntlich  Gaussian Minimum Shift Keying, abgekürtzt  $\rm GMSK$. Dabei handelt es sich um eine Art von  Frequency Shift Keying  (FSK) mit kontinuierlicher Phasenanpassung  $(\rm CP–FSK)$, bei der

  • der Modulationsindex kleinstmöglich ist, um die Orthogonalitätsbedingung noch zu erfüllen 
        $h = 0.5$   ⇒   Minimum Shift Keying,
  • ein Gaußtiefpass mit Impulsantwort  $h_{\rm G}(t)$  vor dem FSK–Modulator eingebracht ist,
    um noch weiter Bandbreite einzusparen.


Die Grafik verdeutlicht den Sachverhalt:

  • Die digitale Nachricht wird durch die Amplitudenkoeffizienten  $a_{\nu} ∈ ±1$  repräsentiert, die einem Diracpuls beaufschlagt sind. Anzumerken ist, dass die eingezeichnete (rote) Folge für die Teilaufgabe (3) vorausgesetzt wird.
  • Der Rechteckimpuls sei dimensionslos, symmetrisch und besitze die GSM–Bitdauer  $T_{\rm B} = T$:
$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
Damit ergibt sich für das Rechtecksignal:
$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
  • Der Gaußtiefpass ist durch seinen Frequenzgang bzw. seine Impulsantwort gegeben:
$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[f/(2 f_{\rm G})]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
wobei die systemtheoretische Grenzfrequenz  $f_{\rm G}$  verwendet wird. In der GSM–Spezifikation wird aber die  $3 \hspace{0.05cm}\rm dB$–Grenzfrequenz mit  $f_{\rm 3\hspace{0.05cm} dB} = 0.3/T$  angegeben. Daraus kann  $f_{\rm G}$  direkt berechnet werden.
  • Das Signal nach dem Gaußtiefpass lautet somit:
$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
Hierbei wird  $g(t)$  als Frequenzimpuls bezeichnet. Für diesen gilt:
$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  • Mit dem tiefpassgefilterten Signal  $q_{\rm G}(t)$, der Trägerfrequenz  $f_{\rm T}$  und dem Frequenzhub  $\Delta f_{\rm A}$  kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:
$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
Verwenden Sie für Ihre Berechnungen die beispielhaften Werte  $f_{\rm T} = 900 \ \rm MHz$  und  $\Delta f_{\rm A} = 68 \ \rm kHz$.




Hinweise:

Tabelle der Gaußschen Fehlerfunktion
  • Verwenden Sie zur Lösung dieser Aufgabe das Gaußintegral (siehe nebenstehende Tabelle):
$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$



Fragebogen

1

In welchem Bereich kann die Augenblicksfrequenz  $f_{\rm A}(t)$  schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?

${\rm Max} \ \big [f_{\rm A}(t) \big ] \ = \ $

2

Welche systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung  $f_{\rm 3\hspace{0.05cm} dB} \cdot T = 0.3$?

$f_{\rm G} \cdot T \ = \ $

3

Berechnen Sie den Frequenzimpuls  $g(t)$  unter Verwendung der Funktion  $\Phi (x)$. Wie groß ist der Impulswert  $g(t = 0)$?

$g(t = 0) \ = \ $

4

Welcher Wert ergibt sich für  $q_{\rm G}(t = 3T)$, wenn alle Koeffizienten außer  $a_{3} = -1$  weiterhin  $a_{\nu \neq 3} = +1$  sind?  Wie groß ist hier  $f_{\rm A}(t = 3T)$?

$q_{\rm G}(t = 3T) \ = \ $

5

Berechnen Sie die Impulswerte  $g(t = ±T)$.

$ g(t = ±T) \ = \ $

6

Wie groß ist der maximale Betrag von  $q_{\rm G}(t)$  bei alternierenden Koeffizienten? Berücksichtigen Sie, dass  $g(t ≥ 2 T) \approx 0$  ist.

${\rm Max} \ |q_{\rm G}(t)| \ = \ $


Musterlösung

(1)  Wenn alle Amplitudenkoeffizienten $a_{\nu}$ gleich $+1$ sind, ist $q_{\rm R}(t) = 1$ eine Konstante.

  • Der Gaußtiefpass hat deshalb keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$.
  • Die maximale Frequenz ist somit
$${\rm Max}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
  • Das Minimum der Augenblicksfrequenz ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind:
$${\rm Min}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
  • In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = -1$.



(2)  Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die $3\hspace{0.05cm}\rm dB$–Grenzfrequenz.

  • Diese lässt sich auch wie folgt ausdrücken:
$$\frac {|H(f = f_{\rm 3\hspace{0.05cm}dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
  • Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:
$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
  • Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3\hspace{0.05cm}dB}$.
  • Aus $f_{\rm 3\hspace{0.05cm}dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \hspace{0.15cm}\underline{\approx 0.45}$.



(3)  Der Frequenzimpuls ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ und Impulsantwort $h_{\rm G}(t)$:

$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
  • Mit der Substitution $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann hierfür auch geschrieben werden:
$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
  • Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (-x) = 1 - \phi (x)$ und $f_{\rm G} \cdot T = 0.45$:
$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$



(4)  Mit $a_{3} = +1$ würde sich $q_{\rm G}(t = 3 T) = 1$ ergeben. Aufgrund der Linearität gilt somit:

$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$


(5)  Mit dem Ergebnis der Teilaufgabe (3) und $f_{\rm G} \cdot T = 0.45$ erhält man:

$$g(t = T) \ = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \ \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$


(6)  Bei der alternierenden Folge sind aus Symmetriegründen die Beträge $|q_{\rm G}(\nu \cdot T)|$ bei allen Vielfachen der Bitdauer $T$ alle gleich.

  • Alle Zwischenwerte bei $t \neq \nu · T$ sind kleiner.
  • Unter Berücksichtigung von $g(t ≥ 2T) \approx 0$ wird jeder einzelne Impulswert $g(0)$ durch den vorangegangenen Impuls mit $g(t = T)$ verkleinert, zusätzlich vom nachfolgenden mit $g(t = -T)$.
  • Es ergeben sich also Impulsinterferenzen und man erhält:
$${\rm Max} \hspace{0.08cm}q_{\rm G}(t) = g(0) - 2 \cdot g(T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$