Exercise 3.7Z: Which Code is Catastrophic?

From LNTwww

Encoder for  $m = 3$ 
and state transition diagram.

The adjacent graph shows

  • two different $\text{ encoder A }$ and $\text{ enoder B}$,  each with memory  $m = 3$  $($top$)$,
  • two state transition diagrams,  labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$  $($bottom$)$.


In the last subtask,  you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.

First,  the three transfer functions

  • $G(D) = 1 + D + D^2 + D^3$,
  • $G(D) = 1 + D^3$,  and
  • $G(D) = 1 + D + D^3$


are analyzed and then the initial sequences  $\underline{x}$  is calculated under the condition

$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.35cm} U(D)= \frac{1}{1+D}.$$

These transfer functions are directly related to the outlined encoders.

  • Furthermore, it remains to be clarified which of the two codes is "catastrophic".
  • One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.



Hints:

  • Two more polynomial products in  ${\rm GF}(2)$  are given:
$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$





Questions

1

What output sequence   $\underline{x}$   results fo r  $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^2 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
The output sequence   $\underline{x}$   is time-limited.

2

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$  is time-limited.

3

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence   $\underline{x}$  is finite in time.

4

What is the code sequence  $\underline{x}$  of $\text{ encoder A }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
The code sequence  $\underline{x}$  contains finitely many  "ones".

5

What is the code sequence   $\underline{x}$   of $\text{ encoder B }$ for the  "sequence of ones"  at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
The code sequence $\underline{x}$ contains finitely many  "ones".

6

Which statements are true for $\text{ encoder B }$?

The $\text{ diagram 1}$  belongs to $\text{ encoder B }$.
The $\text{ diagram 2}$  belongs to $\text{ encoder B }$.
$\text{Encoder B }$ is catastrophic.


Solution

(1)  Applicable are the  solutions 2 and 4:

  • The D–transform of the code sequence  $\underline{x}$  is given by  $U(D) = 1/(1+ D)$.
$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
  • Consider  $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.


(2)  Because of   $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$,  solutions 3 and 4  are applicable here:

$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$


(3)  Only the  proposed solution 1  is correct:

  • The polynomial division  $(1 + D + D^3)$  by  $(1 + D)$  is not possible in the binary Galois field without a remainder.
  • You get  $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $   ⇒   output sequence  $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$  which extends to infinity.


(4)  Only the  proposed solution 1  is correct:

  • The transfer function matrix of $\text{ coder A }$ is:
$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
  • The first code bit in each case is therefore given by the sequence corresponding to subtask  (3)  and the second bit by the sequence corresponding to subtask  (1):
$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$


(5)  Applicable are the  suggested solutions 2 and 4:

  • The transfer function of $\text{ encoder B }$ is  $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
  • The first code sequence now results according to subtask  (2),  while  $\underline{x}^{(2)}$  still corresponds to subtask  (1).
  • Thus we get here  $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$   ⇒   solution suggestion 2.
  • But solution proposition 4 is also correct.  Under the assumption  $\underline{u} = \underline{1}$  made here the code sequence  $\underline{x}$  contains only five  "ones".
  • In the next subtask this fact is taken up again.



(6)  Correct are the  proposed solutions 2 and 3:

As can be seen from state diagram 1,  here the information sequence   $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$   to the code sequence   $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$.  This means:

  • The $\text{ diagram 1}$  belongs to $\text{ encoder A}$.
  • The $\text{ diagram 2}$  belongs to $\text{ encoder B }$   ⇒   Proposed solution 2.


For $\text{ encoder B }$,  the following statements hold:

  • $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
  • $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.


That means:

  • With only five bit errors at positions 1,  2,  3,  5,  6,  the  "zero sequence"  is decoded as a  "one sequence"  and vice versa.
  • Such a code is called  "catastrophic"   ⇒   solution 3.