Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.06: Optimal Decision Boundaries

From LNTwww

Signal space constellation with
N=2, M=2

We consider a binary transmission system  (M=2)  that is defined by the drawn two-dimensional signal space constellation  (N=2).  The following applies to the two possible transmitted vectors that are directly coupled to the messages  m0  and  m1

\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0 \hspace{0.05cm},
\boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1 \hspace{0.05cm}.

The optimal decision boundary between the regions  I_0 ⇔ m_0  and  I_1 ⇔ m_1 is sought.  The following assumptions are made:

  • It applies to subtasks  (1)  to  (3):
{\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5 \hspace{0.05cm}.
  • For subtasks  (4)  and  (5)  should apply:
{\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 1.5 \hspace{0.05cm}.

For AWGN noise with variance  \sigma_n^2,  the decision boundary is the solution of the following vectorial equation with respect to the vector  \boldsymbol{ \rho } =(\rho_1, \rho_2):

|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.

In addition,  two received values ​​

\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm},
\boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5)

are drawn in the graphic.  It must be checked whether these should be assigned to the regions  I_0  (and thus the message m_0)  or to  I_1  (message m_1)  given the corresponding boundary conditions.


Notes:

  • For numeric calculations,  the energy  E = 1  can be set for simplification.


Questions

1

Where lies the optimal decision boundary for equally probable symbols?  At

\rho_2 = 3/4 \cdot \rho_1 + 9/8,
\rho_2 = \, –4/3 \cdot \rho_1 + 19/3,
\rho_2 = 3.

2

To which decision area does the received value  A = (1.5, \ \, 2)  belong?

To decision area  I_0,
to decision area  I_1.

3

To which decision area does the received value  B = (3, \ \, 3.5)  belong?

To decision area  I_0,
to decision area  I_1.

4

What is the equation of the decision line for  {\rm Pr}(m_0) = 0.817, \ \sigma_n = 1?

\rho_2 = 3/4 \cdot \rho_1 + 9/8,
\rho_2 = 3/4 \cdot \rho_1 + 3/4,
\rho_2 = 3/4 \cdot \rho_1 + 3/2,
\rho_2 = 3/4 \cdot \rho_1.

5

Which decisions are made with these new regions  I_0  and  I_1

The received vector  A  is interpreted as message  m_0
The received vector  A  is interpreted as message  m_1
The received vector  B  is interpreted as message  m_0
The received vector  B  is interpreted as message  m_1


Solution

(1)  With  {\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5,  the equation of the boundary line between the decision areas  I_0  and  I_1  reads:

|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.
  • With the given vector values,  i.e. the numerical values
|| \boldsymbol{ s }_1||^2 = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm} || \boldsymbol{ s }_0||^2 = 1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}
one obtains the following equation for the decision boundaries:
3 \cdot \rho_1 - 4 \cdot \rho_2 = ({17-26})/{2} = - {9}/{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2 = 3/4 \cdot \rho_1 + 9/8 \hspace{0.05cm}.
Decision regions for  K=0
  • The decision line lies in the middle between  s_0  and  s_1  and is rotated by  90^\circ  compared to the connecting line between the two symbols.  It goes through the point (2.5, \ \, 3).  So the  first solution  is correct.
  • Solution 2,  on the other hand,  describes the connecting line itself and  \rho_2 = 3  is a horizontal line.


(2)  The decision region  I_1  should of course contain the point  s_1   ⇒   region below the decision line. 

  • Point A = (1.5, \ \, 2)  belongs to this decision region,  as shown in the graphic.
  • This can be shown mathematically,  since the decision line goes through the point (1.5, \ \, 2.25),  for example,  and thus  (1.5, \ \, 2)  lies below the decision line.
  • So,  solution 2  is correct.


(3)  The decision line also goes through the point  (3, \ \, 3.375).

  • B = (3, \ \, 3.5)  lies above and therefore belongs to the decision region  I_0  according to  solution 1.


(4)  According to the equation in the information section and the calculations for subtask  (1),  the following now applies:

Decision regions for different  K
|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.
  • With  || \boldsymbol{ s }_1||^2 = 17|| \boldsymbol{ s }_0||^2 = 26 \boldsymbol{ s }_1 \, –\boldsymbol{ s }_0 = (3, \ \, –4)  we obtain:
\rho_2 = 3/4 \cdot \rho_1 + 9/8 - K /8 \hspace{0.05cm}.
  • The following abbreviation was used here:
K = 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.
  • From this it follows:
\rho_2 = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4 \hspace{0.05cm}.
  • The decision line is shifted down by  3/8  (black curve,  labeled  "K = 3"  in the graphic).  So,  solution 2  is correct.
  1. The first equation describes the optimal decision line for equally probable symbols  (K = 0,  dashed gray).
  2. The third equation is valid for  K = \, –3.  This results with  \sigma_n^2 = 1  for the symbol probabilities  {\rm Pr}(m_1) \approx 0.817  and  {\rm Pr}(m_0) \approx 0.138  (green curve).
  3. The violet straight line results with  K = 9,  i.e. with the same probabilities as for the black curve,  but now with the variance \sigma_n^2 = 3.


(5)  The graphic above already shows that both  A  and  B  now belong to the decision region  I_0Solutions 1 and 3  are correct.