Aufgabe 4.12: Berechnungen zur 16-QAM

From LNTwww

Signalraumkonstellation der 16–QAM

Die Grafik zeigt die Signalraumkonstellation der  Quadraturamplitudenmodulation  mit  $M = 16$  Signalraumpunkten.

Für dieses Modulationsverfahren sollen berechnet werden:

  • die mittlere Energie pro Symbol bzw. pro Bit,
  • die mittlere Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$,
  • die  Union Bound  $p_{\rm UB}$  als obere Schranke,
  • die mittlere Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  bei Graycodierung.



Hinweise:

  • Die Aufgabe behandelt einen Teilaspekt des Kapitels  Trägerfrequenzsysteme mit kohärenter Demodulation.
  • Die Gray–Zuordnung ist in der Grafik angegeben (rote Beschriftung).
  • Die Wahrscheinlichkeit, dass das linke obere Symbol in eines der benachbarten Symbole verfälscht wird, wird mit  $p$  abgekürzt (blaue Pfeile in der Grafik).
  • Eine diagonale Verfälschung  ⇒  zwei Bit verfälscht (grüner Pfeil) wird ausgeschlossen.
  • Für den AWGN–Kanal gilt mit dem komplementären Gaußschen Fehlerintegrale für diese Hilfsgröße:   $p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right )\hspace{0.05cm}.$
  • Verwenden Sie für numerische Berechnungen  $E = 1 \ \rm mWs$  und  $p = 0.4\%$.
  • Aus diesen Werten kann die AWGN–Rauschleistungsdichte  $N_0$  näherungsweise berechnet werden:
$$p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right ) = 0.004 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} { 2E}{ N_0} \approx 2.65^2 \approx 7 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} N_0 = { E}/{ 3.5}\approx 1.4 \cdot 10^{-4}\,{\rm W/Hz} \hspace{0.05cm}.$$



Fragebogen

1

Es sei  $E = 1 \ \rm mWs$. Wie groß ist die mittlere Energie pro Symbol?

$E_{\rm S}\ = \ $

$\ \rm mWs$

2

Wie groß ist die mittlere Energie pro Bit?

$E_{\rm B}\ = \ $

$\ \rm mWs$

3

Geben Sie die (verbesserte) "Union Bound"  $(p_{\rm UB})$  für  $p = 0.4\%$  an.

$p_{\rm UB} \ = \ $

$\ \%$

4

Berechnen Sie die tatsächliche Symbolfehlerwahrscheinlichkeit  $p_{\rm S} < p_{\rm UB}$.

$p_{\rm S} \ = \ $

$\ \%$

5

Berechnen Sie die tatsächliche Bitfehlerwahrscheinlichkeit bei Graycodierung.

$p_{\rm B} \ = \ $

$\ \%$


Musterlösung

(1)  Der Quotient $E_{\rm S}/E$ ergibt sich als der mittlere quadratische Abstand der $M = 16$ Signalraumpunkte $\boldsymbol{s}_i$ vom Ursprung.

  • Mit der gegebenen Signalraumkonstellation der 16–QAM erhält man:
$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}} \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit der im Theorieteil angegebenen Gleichung
$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot E = \frac{ 2 \cdot 15}{ 3 } \cdot E = 10 E \hspace{0.05cm}.$$


(2)  Jedes einzelne Symbol stellt vier Binärsymbole dar. Damit ist die mittlere Energie pro Bit.

$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot E = \underline{2.5 \ {\rm mWs}} \hspace{0.05cm}.$$


Zur Verdeutlichung der 16–QAM–Fehlerwahrscheinlichkeit

(3)  Die Union Bound ist eine obere Schranke für die Symbolfehlerwahrscheinlichkeit.

  • Sie berücksichtigt nur den Übergang zu benachbarten Entscheidungsregionen aufgrund von AWGN–Rauschen.
  • Aus der Grafik geht hervor, dass die Ecksymbole (gelb gefüllt) nur zu zwei anderen Symbolen hin verfälscht werden können und die restlichen Randsymbole (grüne Füllung) in drei Richtungen.
  • Der "worst case" sind die vier inneren Symbole (mit blauer Füllung) mit jeweils vier Verfälschungsmöglichkeiten. Daraus folgt:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB} \hspace{0.05cm}.$$


(4)  Zählt man die blauen Pfeile in obiger Grafik, so kommt man auf

$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$
  • Die mittlere Symbolfehlerwahrscheinlichkeit ist somit gleich
$$p_{\rm S} = { E}/{ 16} \cdot 48 p = 3p = \underline{1.2\%} \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit der im Theorieteil angegebenen Gleichung
$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p \hspace{0.05cm}.$$
  • Beide Gleichungen gelten nur dann exakt, wenn man wie hier diagonale Verfälschungen ausschließt.


(5)  Bei Graycodierung entsprechend der roten Beschriftung in der Grafik bewirkt jeder Symbolfehler genau einen Bitfehler.

  • Da aber mit jedem Symbol $M = 4$ Binärsymbole übertragen werden, ist
$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = \frac{ 1.2\%}{ 4} = \underline{0.3\%} \hspace{0.05cm}.$$