Aufgabe 4.7: Spektren von ASK und BPSK

From LNTwww

Leistungsdichtespektren von  $q(t)$  und  $s(t)$  – gültig für ASK und BPSK

Die Sendesignale von ASK  (Amplitude Shift Keying)  und BPSK  (Binary Phase Shift Keying)  können beide in der Form

$$s(t) = q(t) · z(t)$$

dargestellt werden, wobei  $z(t)$  eine harmonische Schwingung mit der Frequenz  $f_{\rm T}$  und der Amplitude  $1$  darstellt.  Die Trägerphase  $ϕ_{\rm T}$  ist für die hier betrachteten Leistungsdichtespektren nicht von Bedeutung.

  • Die Quelle ist jeweils redundanzfrei, was bedeutet, dass die beiden möglichen Symbole $±1$ gleichwahrscheinlich sind und die Symbole statistisch voneinander unabhängig.
  • Bei ASK sind unipolare Amplitudenkoeffizienten – das heißt:  $a_ν ∈ \{0, 1\}$  – des Quellensignals
$$ q(t) = \sum_{\nu = - \infty}^{+\infty}a_\nu \cdot g_q (t - \nu \cdot T)$$
anzusetzen, während im Fall der BPSK  $a_ν ∈ \{-1, +1\}$  zu berücksichtigen ist.


In der Grafik sind die Leistungsdichtespektren  ${\it Φ}_q(f)$  und  ${\it Φ}_s(f)$  von Quellensignal und Sendesignal angegeben, die sich bei einem NRZ–Rechteckimpuls  $g_q(t)$  mit der Amplitude  $s_0 = 2 \ \rm V$  und der Dauer  $T = 1 \ \rm µ s$  ergeben.  Damit lautet die Spektralfunktion:

$$G_q(f) = s_0 \cdot T \cdot {\rm si}(\pi f T)\hspace{0.05cm}.$$

Zu bestimmen sind die Konstanten  $A$,  $B$,  $C$  und  $D$  für die Modulationsverfahren  $\rm ASK$  und  $\rm BPSK$.





Hinweise:



Fragebogen

1

Welche Werte ergeben sich bei ASK für die Parameter  $A = {\it Φ}_q(f = 0)$  und  $B$  $($Diracgewicht bei  $f = 0)$?

$A \ = \ $

$\ \cdot 10^{-6} \ \rm V^2/Hz$
$B \ = \ $

$\ \rm V^2$

2

Bestimmen Sie für das ASK–Sendesignal die Parameter  $C = {\it Φ}_s(f = f_{\rm T})$  und  $D$  $($Diracgewicht bei $f = f_{\rm T})$ .

$C \ = \ $

$\ \cdot 10^{-6} \ \rm V^2/Hz$
$D \ = \ $

$\ \rm V^2$

3

Welche Werte ergeben sich bei BPSK für die Parameter  $A$  und  $B$?

$A \ = \ $

$\ \cdot 10^{-6} \ \rm V^2/Hz$
$B \ = \ $

$\ \rm V^2$

4

Welche Werte ergeben sich bei BPSK für die Parameter  $C$  und  $D$?

$C \ = \ $

$\ \cdot 10^{-6} \ \rm V^2/Hz$
$D \ = \ $

$\ \rm V^2$

5

Welche Aussagen treffen immer zu, also auch dann, wenn  $g_q(t)$  kein NRZ–Rechteckimpuls ist?

Der kontinuierliche Anteil von  $ {\it Φ}_q(f)$  ist formgleich mit  $|G_q(f)|^2$.
${\it Φ}_q(f)$  beinhaltet bei ASK eine einzige Diraclinie $($bei $f = 0)$.
${\it Φ}_q(f)$ beinhaltet bei BPSK eine einzige Diraclinie $($bei $f = 0)$.


Musterlösung

(1)  Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt  $m_q = s_0/2$.  Das Diracgewicht ist somit  $B = m_q^2 = s_0^2/4\hspace{0.15cm}\underline{ = 1 \ \rm V^2}$.

  • Ohne diesen Gleichanteil ergäbe sich das stochastische Rechtecksignal  $q(t) - m_q ∈ \{+s_0/2, -s_0/2\}$.
  • Dieses gleichsignalfreie Signal besitzt den kontinuierlichen LDS–Anteil  $(s_0/2)^2 · T · {\rm si}^2(πfT)$.
  • Hieraus lässt sich der gesuchte Wert bei der Frequenz  $f = 0$  ermitteln:
$$A = \frac {s_0^2 \cdot T }{4} = \frac {(2\,{\rm V})^2 \cdot 10^{-6} \,{\rm s}}{4}\hspace{0.15cm}\underline {= 10^{-6} \,{\rm V^{2}/Hz}}.$$


(2)  Das Spektrum  $Z(f)$  eines Cosinussignals  $z(t)$  besteht aus zwei Diracfunktionen bei  $\pm f_{\rm T}$, jeweils mit dem Gewicht  $1/2$.

  • Das Leistungsdichtespektrum  ${\it Φ}_z(f)$  besteht ebenfalls aus den beiden Diracfunktionen, nun aber mit jeweiligem Gewicht  $1/4$.
  • Die Faltung  ${\it Φ}_q(f) ∗ {\it Φ}_z(f)$  ergibt das Leistungsdichtespektrum  ${\it Φ}_s(f)$  des Sendesignals.  Daraus folgt:
$$C = {A}/{4} \hspace{0.15cm}\underline { = 0.25 \cdot 10^{-6} \,{\rm V^{2}/Hz}},\hspace{0.2cm}D = {B}/{4}\hspace{0.15cm}\underline { = 0.25 \,{\rm V^{2}}}.$$

Anmerkung:   Die Leistung pro Bit ergibt sich als das Integral über  ${\it Φ}_s(f)$:

$$P_{\rm S} = \int_{ - \infty }^\infty \hspace{-0.3cm} {{\it \Phi}_s(f)}\hspace{0.1cm} {\rm d}f = 2 \cdot \int_{ 0 }^\infty \hspace{-0.3cm} {\left [ C \cdot {\rm si}^2(\pi f T) + D \cdot \delta (f - f_{\rm T}]\right ]}\hspace{0.1cm} {\rm d}f= 2 \cdot \left [ \frac{C}{T} + D \right ] = 2 \cdot \left [ \frac{0.25 \cdot 10^{-6} \,{\rm V^{2}/Hz}}{10^{-6} \,{\rm s}} + 0.25 \,{\rm V^{2}} \right ] \hspace{0.15cm}\underline {= 1 \,{\rm V^{2}}}.$$


(3)  Bei BPSK ist das Quellensignal  $q(t)$  bipolar anzusetzen.

  • Im Leistungsdichtespektrum fehlt deshalb die Diraclinie   ⇒   $\underline{B = 0}$.
  • Der kontinuierliche LDS–Anteil ist viermal so groß wie bei der ASK:
$$A = {s_0^2 \cdot T }\hspace{0.15cm}\underline { = 4 \cdot 10^{-6} \,{\rm V^{2}/Hz}}.$$


(4)  Für die LDS–Parameter des BPSK–Sendesignals gilt analog zur ASK:

$$C = \frac {A}{4}\hspace{0.15cm}\underline { = 10^{-6} \,{\rm V^{2}/Hz}},\hspace{0.2cm}D = \frac {B}{4} \hspace{0.15cm}\underline {= 0}.$$


(5)  Richtig ist nur die erste Aussage:

  • Bei BPSK  (bipolares Quellensignal)  beinhaltet  ${\it Φ}_q(f)$  auch dann keine einzige Diraclinie, wenn  $g_q(t)$  von der Rechteckform abweicht  (gleichwahrscheinliche Symbole vorausgesetzt).
  • Dagegen beinhaltet das unipolare ASK–Quellensignal unendlich viele Diraclinien bei allen Vielfachen von  $1/T$.


Weitere Informationen zu diesem Thema finden Sie auf der Seite  „AKF und LDS bei unipolaren Binärsignalen”  im Buch „Digitalsignalübertragung”.