Aufgabe 5.7Z: Anwendung der IDFT

From LNTwww

Drei Sätze  $\rm A$,  $\rm B$  und  $\rm C$ 
für die Spektralkoeffizienten

Bei der  Diskreten Fouriertransformation  $\rm (DFT)$  werden aus den Zeitabtastwerten  $d(ν)$  mit der Laufvariablen  $ν = 0$, ... , $N – 1$  die diskreten Spektralkoeffizienten  $D(μ)$  mit  $μ = 0$, ... , $N – 1$  wie folgt berechnet:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Hierbei ist mit  $w$  der komplexe Drehfaktor abgekürzt, der wie folgt definiert ist:

$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

Entsprechend gilt für die  Inverse Diskrete Fouriertransformation  $\rm (IDFT)$  quasi als "Umkehrfunktion" der DFT:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

In dieser Aufgabe sollen für verschiedene komplexwertige Beispielfolgen  $D(μ)$ – die in der Tabelle mit  $\rm A$,  $\rm B$  und  $\rm C$  bezeichnet sind – die Zeitkoeffizienten  $d(ν)$  ermittelt werden.  Es gilt somit stets  $N = 8$.





Hinweise:


Fragebogen

1

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm A$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

2

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm B$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

3

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm C$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $


Musterlösung

(1)  Wegen  $D(μ) = 0$  für  $μ ≠ 0$  sind alle Zeitkoeffizienten  $d(ν) = D(0)= 1 - {\rm j}$.  Damit gilt auch:

$${\rm Re}[d(1)] \hspace{0.15cm}\underline {=+ 1}, \hspace{0.3cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= -1}.$$


(2)  Hier sind alle Spektralkoeffizienten Null mit Ausnahme von  $D_1 = 1 - {\rm j}$  und  $D_7 = 1 + {\rm j}$.  Daraus folgt für alle Zeitkoeffizienten  $(0 ≤ ν ≤ 7)$:

$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$
  • Aufgrund der Periodizität gilt aber auch:
$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}= \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$
  • Mit dem Satz von Euler lässt sich dieser Ausdruck wie folgt umformen:
$$d(\nu) = 2 \cdot \cos \left( {\pi}/{4}\cdot \nu \right)+ 2 \cdot \sin \left( {\pi}/{4}\cdot \nu \right).$$
  • Diese Zeitfunktion  $d(ν)$  ist rein reell und kennzeichnet eine harmonische Schwingung mit der Amplitude  $ 2 \cdot \sqrt{2}$  und der Phase  $φ = 45^\circ$.
  • Der Zeitkoeffizient mit Index  $ν = 1$  gibt das Maximum an:
$$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$


(3)  Entsprechend der allgemeinen Gleichung gilt:

$$d(1) = \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+ {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$
  • Die ersten drei Terme liefern rein reelle Ergebnisse:
$${\rm Re}[d(1)] = (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$
  • Für den Imaginärteil ergibt sich:
$${\rm Im}[d(1)] = {\rm Im}\left[4 \cdot{\rm j} \cdot (-1) \right] \hspace{0.15cm}\underline {= -4}.$$