Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.4: AMI and MMS43 Code

From LNTwww

Modified AMI code and MMS43 code

Two different ternary transmission codes are used with ISDN,  which are to be clarified in the diagram at an exemplary binary input signal.

The upper diagram shows twelve bits  (each with bit duration  TB)

  • On the  S0 interface  (between NTBA and terminal equipment),  the  modified AMI code  is used.  The difference to the conventional AMI code is the swapping   01   of the binary input signal.
  • In contrast,  the   MMS43 code  (Modified Monitoring Sum 4B3T)   is used on the   UK0 interface,  where four binary symbols are replaced by three ternary symbols  (voltage values  0 V,+2.5 V  and  2.5 V).  The assignment is done depending on the previously coded symbols.





Notes:


Questions

1

What are the properties of the modified AMI code?

Symbol duration  TS  and bit duration  TB  of the binary signal are the same.
The encoding is done symbol-by-symbol.
Each binary  "0"  is represented by  0V
The binary  "1"  is alternately represented by  +s0  and  s0

2

What is the relative redundancy of the  (modified)  AMI code?

rAMI = 

 %

3

Let be  s0=0.75V  and  R = 100 \hspace{0.1cm} {\rm Ω}.  What is the average transmitted power?

P_{\rm S, \ AMI} \ = \

\ \rm mW

4

Which properties does the MMS43 code show?

Symbol duration  T_{\rm S}  and bit duration  T_{\rm B}  of the binary signal are the same.
The encoding is done block-by-block.
Each binary  "0"  is represented by  0 \hspace{0.1cm} \rm V

5

What is the relative redundancy of the MMS43 code?

r_{\rm MMS43} \ = \

\ \%

6

What is the symbol rate on the  \rm U_{\rm K0} bus if there are  12  ternary synchronization and control symbols to be considered per millisecond?

R_{\rm U_{K0}} \ = \

\ \rm ternary \ symbols/second

7

Let be  s_{0} = 2.5 \hspace{0.1cm} {\rm V}  and  R = 100 \hspace{0.1cm} {\rm \Omega }.  What is the transmit power?  Note:   For simplicity,  assume equally probable ternary symbols.

P_{\rm S,\ MMS43} \ = \

\ \rm mW


Solution

(1)  The first two statements  are correct:

  • The modified AMI code is a pseudo-ternary code with  T_{\rm S} = T_{\rm B}  and symbol-wise coding.  The stated assignments apply to the conventional AMI code.
  • On the other hand,  in the modified AMI code the binary  "1"  is represented by the voltage value  0 \ \rm V  and the binary  "0"  alternately by  +s_{0}  resp.  -s_{0},  where for  s_{0} = 0.75 \ \rm V  is to be set.


(2)  The equivalent bit rate of the AMI encoded signal is  R_{\rm C} = {\rm log_2}\hspace{0.05cm}(3)/T_{\rm S}.

  • The bit rate of the redundancy-free binary source signal is equal to  R_{\rm B} = 1/T_{\rm B}.
  • With  T_{\rm S} = T_{\rm B},  according to the chapter  "Basics of Coded Transmission"  of the book  "Digital Signal Transmission",  we obtain for the  (relative)  redundancy of the modified AMI code:
r_{\rm AMI} = \frac{R_{\rm C}-R_{\rm B}}{R_{\rm C}} = 1 - \frac{1}{{\rm ld}\,(3)} \hspace{0.15cm}\underline{\approx 36.9\,\%} \hspace{0.05cm}.


(3)  Using the unit impedance  R = 1 \ \rm \Omega ,  the following applies to the transmit power  (with the unit  \rm V^{2}):

P_{\rm S,\,AMI} = {1}/{2} \cdot {s_0}^2 = {1}/{2} \cdot {0.75\,{\rm V}}^2 \approx 0.28\,{\rm V^2} \hspace{0.05cm}.
  • Here it is considered that the AMI encoded signal is equal to  0 \ \rm V  in half of the time.
  • Finally,  considering the impedance  R = 100 \ \rm \Omega,  we get:
P_{\rm S,\,AMI} = \frac{0.28\,{\rm V^2}}{100\,\Omega} \hspace{0.15cm}\underline{ = 2.8\,{\rm mW}} \hspace{0.05cm}.


(4)  The MMS43 code actually operates in blocks,  with  m_{q} = 4  binary symbols  replaced by  m_{c} = 3   ternary symbols:

4 \cdot T_{\rm B} = 3 \cdot T_{\rm S}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm S} = {4}/{3} \cdot T_{\rm B} \hspace{0.05cm}.
  • That means:  The first solution does not apply as well as the last one.  Only  solution 2  is correct:
  • In block coding,  the binary symbol  "0"  cannot be uniformly replaced by the same code symbol.  Rather,  the encoding can be described as follows,  assuming the running digital sum  {\it \Sigma}_{0} = 0  at the beginning  (see graphic in the information section):
\mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{0 + +}\hspace{0.2cm}({\it \Sigma}_1 = 2)\hspace{0.05cm},
\mathbf{0 1 1 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0 \,\,+}\hspace{0.2cm}({\it \Sigma}_2 = 2)\hspace{0.05cm},
\mathbf{0 1 0 1} \hspace{0.1cm} \ \Rightarrow \ \hspace{0.1cm}\mathbf{- \,0\,\,\, 0}\hspace{0.2cm}({\it \Sigma}_3 = 1) \hspace{0.05cm}.


(5)  The MMS43 code belongs to the class of 4B3T codes. For these it is valid:

R_{\rm B} = \frac{1}{T_{\rm B}}, \hspace{0.2cm} R_{\rm C} = \frac{{\rm ld}\,(3)}{T_{\rm S}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}r_{\rm MMS43} = 1 - \frac{R_{\rm B}}{R_{\rm C}} = 1 - \frac{T_{\rm S}/T_{\rm B}}{{\rm ld}\,(3)} = 1 - \frac{4/3}{{\rm log_2}\,(3)} \hspace{0.15cm}\underline{\approx 15.9\,\%} \hspace{0.05cm}.


(6)  The following number of ternary symbols are transmitted on the \rm U_{K0} bus per millisecond:

  • Channel B1:   64  binary symbols   ⇒   48  ternary symbols,
  • Channel B2:   64  binary symbols   ⇒   48  ternary symbols,
  • D channel:   16  binary symbols   ⇒   12  ternary symbols,
  • Synchronization and control symbols   ⇒   12  ternary symbols.


As a sum,  this results in  120  ternary symbols per millisecond or  \underline{120,000}  ternary symbols per second.


(7)  Considering the note in the information section and the larger transmission amplitude  s_{0} = 2.5 \ \rm V  compared to the  (modified)  AMI code,  we obtain:

P_{\rm S,\,MMS43} = \frac{2}{3} \cdot \frac{{s_0}^2}{R} = \frac{2}{3} \cdot \frac{({2.5\,{\rm V}})^2}{100\,{\rm \Omega}} \hspace{0.15cm}\underline{\approx 4.2\,{\rm mW}} \hspace{0.05cm}.