Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.5: Locality Curve for DSB-AM

From LNTwww

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  AN=2 V  and frequency  fN=10 kHz,
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  fT=50 kHz.


Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).

When solving, take into account that the equivalent low-pass signal is in the form

sTP(t)=a(t)ejϕ(t),a(t)0.

For  ϕ(t),  the range  –\pi < \phi(t) \leq +\pi  is permissible and the generally valid equation applies:

\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.



Hints:


Questions

1

Calculate the equivalent low-pass signal  s_{\rm TP}(t)  in the frequency and time domain.  What is the value of  s_{\rm TP}(t)  at the start time  t = 0?

\text{Re}[s_{\text{TP}}(t=0)]\ = \

 \text{V}
\text{Im}[s_{\text{TP}}(t=0 )]\ = \

 \text{V}

2

What are the values of  s_{\rm TP}(t)  at  t = 10 \ {\rm µ} \text{s}= T_0/10,     t = 25 \ {\rm µ} \text{s}= T_0/4,     t = 75 \ {\rm µ} \text{s}= 3T_0/4  and  T_0 = 100 \ {\rm µs}?
Show that all values are purely real.

\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \

 \text{V}

3

What is the magnitude function  a(t)  in the time domain?  What are the values at times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

a(t=25 \ {\rm µ} \text{s})\ = \

 \text{V}
a(t=75 \ {\rm µ} \text{s})\ = \

 \text{V}

4

Give the phase function  \phi(t)  in the time domain.  What values result at the times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

\phi(t=25 \ {\rm µ} \text{s}) \ = \

 \text{Grad}
\phi(t=75\ {\rm µ} \text{s})\ = \

 \text{Grad}


Solution

Locality curve at time  t = 0

(1)  If all Dirac delta lines are shifted to the left by  f_{\rm T} = 50 \ \text{kHz} , they are located at  -\hspace{-0.08cm}10 \ \text{kHz}0  and  +10 \ \text{kHz}.

  • The equation for  s_{\rm TP}(t)  is with  \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}:
s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.
\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .


(2)  The above equation can be transformed according to  Euler's theorem  with  T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}  as follows:

\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .
  • This shows that  s_{\rm TP}(t)  is real for all times  t.
  • We obtain for the numerical values we are looking for:
s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.


(3)  By definition,  a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:

a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}
a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .


(4)  In general, the phase function is:

\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}

Due to the fact that here  {\rm Im}[s_{\rm TP}(t)] = 0  for all times, one obtains:

  • If  {\rm Re}[s_{\rm TP}(t)] > 0  holds, the phase  \phi(t) = 0.
  • On the other hand, if the real part is negative:     \phi(t) = \pi.


We restrict ourselves here to the time range of one period:   0 \leq t \leq T_0.

  • In the range between  t_1  and  t_2  there is a phase of  180^\circ  otherwise  \text{Re}[s_{\rm TP}(t)] \geq 0.
  • To calculate  t_1 , the result of subtask  (2)  can be used:
\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )
  • From this one obtains  t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}.
  • By similar reasoning one arrives at the result:  t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}.


The values we are looking for are therefore: 

\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},
\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).