Exercise 4.5: Locality Curve for DSB-AM
We consider a similar transmission scenario as in Exrcise 4.4 (but not the same):
- A sinusoidal source signal with amplitude AN=2 V and frequency fN=10 kHz,
- Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency fT=50 kHz.
Opposite you see the spectral function S+(f) of the analytical signal s+(t).
When solving, take into account that the equivalent low-pass signal is in the form
- sTP(t)=a(t)⋅ej⋅ϕ(t),a(t)≥0.
For ϕ(t), the range –\pi < \phi(t) \leq +\pi is permissible and the generally valid equation applies:
- \phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.
Hints:
- This exercise belongs to the chapter Equivalent Low-Pass Signal and its Spectral Function.
- You can check your solution with the interactive applet Physical Signal & Equivalent Low-Pass Signal ⇒ "Locality Curve".
Questions
Solution
(1) If all Dirac delta lines are shifted to the left by f_{\rm T} = 50 \ \text{kHz} , they are located at -\hspace{-0.08cm}10 \ \text{kHz}, 0 and +10 \ \text{kHz}.
- The equation for s_{\rm TP}(t) is with \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}:
- s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }
- \Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.
- \Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .
(2) The above equation can be transformed according to Euler's theorem with T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s} as follows:
- \frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .
- This shows that s_{\rm TP}(t) is real for all times t.
- We obtain for the numerical values we are looking for:
- s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.
(3) By definition, a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:
- a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}
- a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .
(4) In general, the phase function is:
- \phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}
Due to the fact that here {\rm Im}[s_{\rm TP}(t)] = 0 for all times, one obtains:
- If {\rm Re}[s_{\rm TP}(t)] > 0 holds, the phase \phi(t) = 0.
- On the other hand, if the real part is negative: \phi(t) = \pi.
We restrict ourselves here to the time range of one period: 0 \leq t \leq T_0.
- In the range between t_1 and t_2 there is a phase of 180^\circ otherwise \text{Re}[s_{\rm TP}(t)] \geq 0.
- To calculate t_1 , the result of subtask (2) can be used:
- \sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )
- From this one obtains t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}.
- By similar reasoning one arrives at the result: t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}.
The values we are looking for are therefore:
- \phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},
- \phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).