Difference between revisions of "Aufgaben:Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes"
m (Guenter verschob die Seite 3.10Z ML–Decodierung von Faltungscodes nach Aufgabe 3.10Z: ML–Decodierung von Faltungscodes) |
|
(No difference)
|
Revision as of 07:49, 4 January 2018
Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
- Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt: $x_i ∈ \{–1, \, +1\}$.
- Der Kanal sei durch das BSC–Modell gegeben ⇒ $y_i ∈ \{–1, \, +1\}$ oder es wird der AWGN–Kanal vorausgesetzt ⇒ reellwertige $y_i$.
- Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ entsprechend
- $$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
Dies entspricht dem Maximum–a–posteriori (MAP)–Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere Maximum–Likelihood–Kriterium über:
- $$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz $\underline{\upsilon}$ als Schätzung für die Informationssequenz $\underline{u}$ aus.
In dieser Aufgabe soll der Zusammenhang zwischen der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie der Euklidischen Distanz
- $$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
ermittelt werden. Anschließend ist das obige ML–Kriterium mit
- der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
- der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
- dem Korrelationswert $〈 x \cdot y 〉$ zu formulieren.
Hinweise:
- Die Aufgabe bezieht sich auf die Theorieseite 6 des Kapitels .
- Zur Vereinfachung wird auf Tilden und Apostroph verzichtet.
- Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
Fragebogen
Musterlösung
Die Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ gibt die Anzahl der Bit an, in denen sich $\underline{x}$ und $\underline{y}$ unterscheiden, für die also $x_i \, – y_i = ±2 \ ⇒ \ (x_i \, – y_i)^2 = 4$ gilt. Gleiche Symbole $(x_i = y_i)$ tragen zur Hamming–Distanz nicht bei und ergeben $(x_i \, – y_i)^2 = 0$. Entsprechend dem Lösungsvorschlag 3 kann daher geschrieben werden:
- $$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
(2) Beim BSC–Modell ist es allgemein üblich, zum gegebenen Empfangsvektor $\underline{y}$ das Codewort $\underline{x}$ mit der kleinsten Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ auszuwählen:
- $$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
Entsprechend der Teilaufgabe (1) gilt aber auch:
- $$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
Der Faktor $1/4$ spielt für die Minimierung keine Rolle. Da $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$ ist, ist es auch egal, ob die Minimierung hinsichtlich $d_{\rm E}(\underline{x}, \, \underline{y})$ oder $d_{\rm E}^2(\underline{x}, \, \underline{y})$ vorgenommen wird. Alle Lösungsvorschläge sind richtig.
(3) Das Quadrat der Euklidischen Distanz kann wie folgt ausgedrückt werden:
- $$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
Die beiden ersten Summanden sind jeweils gleich $L$ und müssen für die Minimierung nicht berücksichtigt werden. Für den letzten Ausdruck in dieser Gleichung kann $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$ geschrieben werden. Aufgrund des negativen Vorzeichens wird aus der Minimierung eine Maximierung ⇒ Antwort 2.
(4) Für den AWGN–Kanal kann im Gegensatz zum BSC keine Hamming–Distanz angegeben werden. Richtig sind die Lösungsvorschläge 2 und 3. Ausgehend von der Gleichung
- $$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
gelten für den ersten und letzten Summanden die gleichen Aussagen wie für das BSC–Modell – siehe Teilaufgabe (3). Für den mittleren Summanden gilt mit $y_i = x_i + n_i$ und $x_i ∈ \{–1, \, +1\}$:
- $$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
Der erste Summand ergibt wieder $L$, der zweite ist proportional zur Rauschleistung und der letzte Term verschwindet, da $\underline{x}$ und $\underline{n}$ unkorreliert sind. Für die Minimerung von $d_{\rm E}(\underline{x}, \, \underline{y})$ muss also die Summe über $y_i^2$ nicht berücksichtigt werden, da kein Bezug zu den Codesequenzen $\underline{x}$ besteht.