Difference between revisions of "Aufgaben:Exercise 3.2Z: Relationship between PDF and CDF"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID117__Sto_Z_3_2.png|right| | + | [[File:P_ID117__Sto_Z_3_2.png|right|frame|Verteilungsfunktion $ F_x(r)$]] |
Gegeben ist die Zufallsgröße $x$ mit der Verteilungsfunktion | Gegeben ist die Zufallsgröße $x$ mit der Verteilungsfunktion | ||
− | $$ F_x(r)=\left\{\begin{array}{*{4}{c}} 0.25\cdot {\rm e}^{2\it r} &\rm f\ddot{u}r\hspace{0.1cm}\it r<\rm 0, \\ 1-0.25\cdot {\rm e}^{-2\it r} & \rm f\ddot{u}r\hspace{0.1cm}\it r\ge\rm 0. \\\end{array}\right.$$ | + | :$$ F_x(r)=\left\{\begin{array}{*{4}{c}} 0.25\cdot {\rm e}^{2\it r} &\rm f\ddot{u}r\hspace{0.1cm}\it r<\rm 0, \\ 1-0.25\cdot {\rm e}^{-2\it r} & \rm f\ddot{u}r\hspace{0.1cm}\it r\ge\rm 0. \\\end{array}\right.$$ |
− | Diese Funktion ist rechts dargestellt. Es ist zu erkennen, dass an der Sprungstelle $r = 0$ der rechtsseitige Grenzwert gültig ist. | + | *Diese Funktion ist rechts dargestellt. |
+ | *Es ist zu erkennen, dass an der Sprungstelle $r = 0$ der rechtsseitige Grenzwert gültig ist. | ||
Line 13: | Line 14: | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]]. | ||
*Bezug genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]. | *Bezug genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]. | ||
− | *Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo [[Zusammenhang zwischen WDF und VTF]]. | + | *Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo [[Zusammenhang_zwischen_WDF_und_VTF_(Lernvideo)|Zusammenhang zwischen WDF und VTF]]. |
+ | |||
Line 30: | Line 32: | ||
{Wie groß ist die Wahrscheinlichkeit, dass $x$ positiv ist? | {Wie groß ist die Wahrscheinlichkeit, dass $x$ positiv ist? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x > 0) \ = $ { 0.25 3% } | + | ${\rm Pr}(x > 0) \ = \ $ { 0.25 3% } |
− | {Wie groß ist die Wahrscheinlichkeit, dass $|x|$ größer ist als $0.5$? | + | {Wie groß ist die Wahrscheinlichkeit, dass $|\hspace{0.05cm}x\hspace{0.05cm}|$ größer ist als $0.5$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(|x| > 0.5) \ = $ { 0.184 3% } | + | ${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| > 0.5) \ = \ $ { 0.184 3% } |
{Geben Sie die zugehörige WDF $f_x(x)$ allgemein und den Wert für $x = 1$ an. | {Geben Sie die zugehörige WDF $f_x(x)$ allgemein und den Wert für $x = 1$ an. | ||
|type="{}"} | |type="{}"} | ||
− | $f_x(x =1)\ = $ { 0.0677 3% } | + | $f_x(x =1)\ = \ $ { 0.0677 3% } |
− | {Wie groß ist die | + | {Wie groß ist die Wahrscheinlichkeit, dass $x$ genau gleich $1$ ist? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x = 1)\ = $ { 0. } | + | ${\rm Pr}(x = 1)\ = \ $ { 0. } |
− | {Wie groß ist die | + | {Wie groß ist die Wahrscheinlichkeit, dass $x$ genau gleich $0$ ist? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x = 0)\ = $ { 0.5 3% } | + | ${\rm Pr}(x = 0)\ = \ $ { 0.5 3% } |
Revision as of 08:51, 8 August 2018
Gegeben ist die Zufallsgröße $x$ mit der Verteilungsfunktion
- $$ F_x(r)=\left\{\begin{array}{*{4}{c}} 0.25\cdot {\rm e}^{2\it r} &\rm f\ddot{u}r\hspace{0.1cm}\it r<\rm 0, \\ 1-0.25\cdot {\rm e}^{-2\it r} & \rm f\ddot{u}r\hspace{0.1cm}\it r\ge\rm 0. \\\end{array}\right.$$
- Diese Funktion ist rechts dargestellt.
- Es ist zu erkennen, dass an der Sprungstelle $r = 0$ der rechtsseitige Grenzwert gültig ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verteilungsfunktion.
- Bezug genommen wird auch auf das Kapitel Wahrscheinlichkeitsdichtefunktion.
- Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo Zusammenhang zwischen WDF und VTF.
Fragebogen
Musterlösung
- Ein horizontaler Abschnitt in der VTF weist darauf hin, dass die Zufallsgröße in diesem Bereich keine Werte besitzt.
- Dagegen weist ein vertikaler Abschnitt in der VTF auf eine Diracfunktion in der WDF (an gleicher Stelle $x_0$) hin. Dies bedeutet, dass die Zufallsgröße den Wert $x_0$ sehr häufig annimmt, nämlich mit endlicher Wahrscheinlichkeit. Alle anderen Werte treten exakt mit der Wahrscheinlichkeit $0$ auf.
- Ist jedoch $x$ auf den Bereich von $x_{\rm min}$ bis $x_{\rm max}$ begrenzt, so ist $F_x(r) = 0$ für $r < x_{\rm min}$ und $F_x(r) = 1$ für $r > x_{\rm max}$. In diesem Sonderfall wäre auch die zweite Aussage zutreffend.
(2) Die gesuchte Wahrscheinlichkeit kann man aus der Differenz der VTF-Werte an den Grenzen berechnen:
$${\rm Pr}( x> 0)=\it F_x(\infty)-\it F_x(\rm 0)
\hspace{0.15cm}\underline{=\rm 0.25}.$$
(3) Für die Wahrscheinlichkeit, dass $x$ größer als $0.5$ ist, gilt: $${\rm Pr}(x> 0.5)=1- F_x(0.5)=\rm 0.25\cdot e^{-1} \hspace{0.15cm}{\approx0.092}. $$
Aus Symmetriegründen ist ${\rm Pr}(x<- 0.5)$ genauso groß. Daraus folgt: $${\rm Pr}( | x| >\rm 0.5) \hspace{0.15cm}\underline{= \rm 0.184}.$$
(4) Die WDF erhält man aus der zugehörigen VTF durch Differenzieren der zwei Bereiche. Es ergibt sich eine zweiseitige Exponentialfunktion sowie eine Diracfunktion bei $x = 0$: $$f_x(x)=\rm 0.5\cdot \rm e^{-2\cdot |\it x|} + \rm 0.5\cdot\delta(\it x).$$ Der gesuchte Zahlenwert ist $f_x(x = 1)\hspace{0.15cm}\underline{= \rm 0.0677}$.
Hinweis: Für die zweiseitige Exponentialverteilung ist der Begriff „Laplaceverteilung” gebräuchlich.
(5) Im Bereich um $1$ beschreibt $x$ eine kontinuierliche Zufallsgröße. Die Wahrscheinlichkeit, dass $x$ exakt den Wert $1$ aufweist, ist deshalb ${\rm Pr}(x = 1)\hspace{0.15cm}\underline{= \rm 0}.$
(6) In $50\%$ der Zeit wird $x = 0$ gelten: ${\rm Pr}(x = 0)\hspace{0.15cm}\underline{= \rm 0.5}.$
Hinweise: :
- Die WDF eines Sprachsignals wird häufig durch eine zweiseitige Exponentialfunktion beschrieben.
- Die Diracfunktion bei $x = 0$ berücksichtigt vor allem Sprachpausen – hier in $50\%$ aller Zeiten.